Abstract
The sensitivity of Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) excitation and emission spectra to the physical state of the membrane arises from dipolar relaxation processes in the membrane region surrounding the Laurdan molecule. Experiments performed using phospholipid vesicles composed of phospholipids with different polar head groups show that this part of the molecule is not responsible for the observed effects. Also, pH titration in the range from pH 4 to 10 shows that the spectral variations are independent of the charge of the polar head. A two-state model of dipolar relaxation is used to qualitatively explain the behavior of Laurdan. It is concluded that the presence of water molecules in the phospholipid matrix are responsible for the spectral properties of Laurdan in the gel phase. In the liquid crystalline phase there is a relaxation process that we attribute to water molecules that can reorientate during the few nanoseconds of the excited state lifetime. The quantitation of lipid phases is obtained using generalized polarization which, after proper choice of excitation and emission wavelengths, satisfies a simple addition rule.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bigelow D. J., Thomas D. D. Rotational dynamics of lipid and the Ca-ATPase in sarcoplasmic reticulum. The molecular basis of activation by diethyl ether. J Biol Chem. 1987 Oct 5;262(28):13449–13456. [PubMed] [Google Scholar]
- Chong P. L. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry. 1988 Jan 12;27(1):399–404. doi: 10.1021/bi00401a060. [DOI] [PubMed] [Google Scholar]
- Copeland B. R., Andersen H. C. A theory of effect of protons and divalent cations on phase equilibria in charged bilayer membranes: comparison with experiment. Biochemistry. 1982 Jun 8;21(12):2811–2820. doi: 10.1021/bi00541a001. [DOI] [PubMed] [Google Scholar]
- Devaux P. F., Seigneuret M. Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim Biophys Acta. 1985 Jun 12;822(1):63–125. doi: 10.1016/0304-4157(85)90004-8. [DOI] [PubMed] [Google Scholar]
- Gratton E., Limkeman M. A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J. 1983 Dec;44(3):315–324. doi: 10.1016/S0006-3495(83)84305-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jendrasiak G. L., Hasty J. H. The electrical conductivity of hydrated phospholipids. Biochim Biophys Acta. 1974 Apr 26;348(1):45–54. doi: 10.1016/0005-2760(74)90091-5. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
- Lakowicz J. R., Freshwater G., Weber G. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies. Biophys J. 1980 Oct;32(1):591–601. doi: 10.1016/S0006-3495(80)84992-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lentz B. R., Clubb K. W., Alford D. R., Höchli M., Meissner G. Phase behavior of membranes reconstituted from dipentadecanoylphosphatidylcholine and the Mg2+-dependent, Ca2+-stimulated adenosinetriphosphatase of sarcoplasmic reticulum: evidence for a disrupted lipid domain surrounding protein. Biochemistry. 1985 Jan 15;24(2):433–442. doi: 10.1021/bi00323a029. [DOI] [PubMed] [Google Scholar]
- Macgregor R. B., Weber G. Estimation of the polarity of the protein interior by optical spectroscopy. Nature. 1986 Jan 2;319(6048):70–73. doi: 10.1038/319070a0. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
- Parasassi T., Conti F., Glaser M., Gratton E. Detection of phospholipid phase separation. A multifrequency phase fluorimetry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence. J Biol Chem. 1984 Nov 25;259(22):14011–14017. [PubMed] [Google Scholar]
- Parasassi T., Conti F., Gratton E. Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol Biol. 1986;32(1):103–108. [PubMed] [Google Scholar]
- Parasassi T., De Stasio G., Miccheli A., Bruno F., Conti F., Gratton E. Abscisic acid-induced microheterogeneity in phospholipid vesicles. A fluorescence study. Biophys Chem. 1990 Jan;35(1):65–73. [PubMed] [Google Scholar]
- Parasassi T., De Stasio G., d'Ubaldo A., Gratton E. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 1990 Jun;57(6):1179–1186. doi: 10.1016/S0006-3495(90)82637-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruggiero A., Hudson B. Critical density fluctuations in lipid bilayers detected by fluorescence lifetime heterogeneity. Biophys J. 1989 Jun;55(6):1111–1124. doi: 10.1016/S0006-3495(89)82908-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
- Van der Meer B. W. Biomembrane structure and dynamics viewed by fluorescence. Subcell Biochem. 1988;13:1–53. doi: 10.1007/978-1-4613-9359-7_1. [DOI] [PubMed] [Google Scholar]
- Whitesell R. R., Regen D. M., Beth A. H., Pelletier D. K., Abumrad N. A. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity. Biochemistry. 1989 Jun 27;28(13):5618–5625. doi: 10.1021/bi00439a042. [DOI] [PubMed] [Google Scholar]
