Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Aug;60(2):341–351. doi: 10.1016/S0006-3495(91)82059-8

Surface charging by large multivalent molecules. Extending the standard Gouy-Chapman treatment.

S Stankowski 1
PMCID: PMC1260070  PMID: 1912277

Abstract

Traditionally, Gouy-Chapman theory has been used to calculate the distribution of ions in the diffuse layer next to a charged surface. In recent years, the same theory has found application to adsorption (incorporation, partitioning) of charged peptides, hormones, or drugs at the membrane-water interface. Empirically it has been found that an effective charge, smaller than the physical charge, must often be used in the Gouy-Chapman formula. In addition, the large size of these molecules can be expected to influence their adsorption isotherms. To improve evaluation techniques for such experiments, comparatively simple extensions of the standard Gouy-Chapman formalism have been studied which are based on a discrete charge virial expansion. The model allows for the mobility of charged groups at the interface. It accounts for finite size of the adsorbed macromolecules and for discrete charge effects arising from pair interactions in the interface plane. In contrast to previous discrete charge treatments this model nearly coincides with the Gouy-Chapman formalism in the case where the adsorbing molecules are univalent. Large discrepancies are found for multivalent molecules. This could explain the reduced effective charges needed in the standard Gouy-Chapman treatment. The reduction factor can be predicted. The model is mainly limited to low surface coverage, typical for the adsorption studies in question.

Full text

PDF
341

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
  2. Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Binding isotherms and zeta-potential of a cyclic somatostatin analogue. Biochemistry. 1990 Dec 11;29(49):10995–11000. doi: 10.1021/bi00501a018. [DOI] [PubMed] [Google Scholar]
  3. Brown R. H., Jr Membrane surface charge: discrete and uniform modelling. Prog Biophys Mol Biol. 1974;28:341–370. doi: 10.1016/0079-6107(74)90021-2. [DOI] [PubMed] [Google Scholar]
  4. Cevc G. Membrane electrostatics. Biochim Biophys Acta. 1990 Oct 8;1031(3):311–382. doi: 10.1016/0304-4157(90)90015-5. [DOI] [PubMed] [Google Scholar]
  5. Chung L., Kaloyanides G., McDaniel R., McLaughlin A., McLaughlin S. Interaction of gentamicin and spermine with bilayer membranes containing negatively charged phospholipids. Biochemistry. 1985 Jan 15;24(2):442–452. doi: 10.1021/bi00323a030. [DOI] [PubMed] [Google Scholar]
  6. Frey S., Tamm L. K. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Biochem J. 1990 Dec 15;272(3):713–719. doi: 10.1042/bj2720713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kuchinka E., Seelig J. Interaction of melittin with phosphatidylcholine membranes. Binding isotherm and lipid head-group conformation. Biochemistry. 1989 May 16;28(10):4216–4221. doi: 10.1021/bi00436a014. [DOI] [PubMed] [Google Scholar]
  8. Langner M., Cafiso D., Marcelja S., McLaughlin S. Electrostatics of phosphoinositide bilayer membranes. Theoretical and experimental results. Biophys J. 1990 Feb;57(2):335–349. doi: 10.1016/S0006-3495(90)82535-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee A. G. Effects of charged drugs on the phase transition temperatures of phospholipid bilayers. Biochim Biophys Acta. 1978 Dec 4;514(1):95–104. doi: 10.1016/0005-2736(78)90079-2. [DOI] [PubMed] [Google Scholar]
  10. McLaughlin S., Harary H. The hydrophobic adsorption of charged molecules to bilayer membranes: a test of the applicability of the stern equation. Biochemistry. 1976 May 4;15(9):1941–1948. doi: 10.1021/bi00654a023. [DOI] [PubMed] [Google Scholar]
  11. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  12. Nelson A. P., McQuarrie D. A. The effect of discrete charges on the electrical properties of a membrane. I. J Theor Biol. 1975 Nov;55(1):13–27. doi: 10.1016/s0022-5193(75)80106-8. [DOI] [PubMed] [Google Scholar]
  13. Sautereau A. M., Betermier M., Altibelli A., Tocanne J. F. Adsorption of the cationic antitumoral drug celiptium to phosphatidylglycerol in membrane model systems. Effect on membrane electrical properties. Biochim Biophys Acta. 1989 Jan 30;978(2):276–282. doi: 10.1016/0005-2736(89)90125-9. [DOI] [PubMed] [Google Scholar]
  14. Schoch P., Sargent D. F. Quantitative analysis of the binding of melittin to planar lipid bilayers allowing for the discrete-charge effect. Biochim Biophys Acta. 1980 Nov 4;602(2):234–247. doi: 10.1016/0005-2736(80)90307-7. [DOI] [PubMed] [Google Scholar]
  15. Schwarz G., Beschiaschvili G. Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim Biophys Acta. 1989 Feb 13;979(1):82–90. doi: 10.1016/0005-2736(89)90526-9. [DOI] [PubMed] [Google Scholar]
  16. Schwyzer R. Molecular mechanism of opioid receptor selection. Biochemistry. 1986 Oct 7;25(20):6335–6342. doi: 10.1021/bi00368a075. [DOI] [PubMed] [Google Scholar]
  17. Seelig A., Allegrini P. R., Seelig J. Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochim Biophys Acta. 1988 Apr 7;939(2):267–276. doi: 10.1016/0005-2736(88)90070-3. [DOI] [PubMed] [Google Scholar]
  18. Seelig A., Macdonald P. M. Binding of a neuropeptide, substance P, to neutral and negatively charged lipids. Biochemistry. 1989 Mar 21;28(6):2490–2496. doi: 10.1021/bi00432a021. [DOI] [PubMed] [Google Scholar]
  19. Stankowski S. Large-ligand adsorption to membranes. III. Cooperativity and general ligand shapes. Biochim Biophys Acta. 1984 Nov 7;777(2):167–182. doi: 10.1016/0005-2736(84)90418-8. [DOI] [PubMed] [Google Scholar]
  20. Stankowski S., Schwarz G. Electrostatics of a peptide at a membrane/water interface. The pH dependence of melittin association with lipid vesicles. Biochim Biophys Acta. 1990 Jun 27;1025(2):164–172. doi: 10.1016/0005-2736(90)90094-5. [DOI] [PubMed] [Google Scholar]
  21. Tsien R. Y. A virial expansion for discrete charges buried in a membrane. Biophys J. 1978 Nov;24(2):561–567. doi: 10.1016/S0006-3495(78)85402-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Winiski A. P., McLaughlin A. C., McDaniel R. V., Eisenberg M., McLaughlin S. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry. 1986 Dec 16;25(25):8206–8214. doi: 10.1021/bi00373a013. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES