Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Aug;60(2):369–379. doi: 10.1016/S0006-3495(91)82062-8

Analysis of the dynamics of relaxation type oscillation in glycolysis of yeast extracts.

J Das 1, H G Busse 1
PMCID: PMC1260073  PMID: 1832975

Abstract

In yeasts, the glycolysis may display oscillations of its metabolites while it is converting glucose. The dynamics of the oscillations has been investigated in cytoplasmic extracts of yeast under relaxation type conditions by determining the time course of some of the glycolytic metabolites. The compounds of the nucleotide pool have been identified as fast variables and the glucose derivatives as slow variables of the relaxation type. The period of oscillation has been subdivided into four phases which represent prominent parts of the limit cycle in the phase plane of a slow versus a fast variable. From the reaction processes in these phases, a dynamical picture of the mechanisms of oscillations is suggested. Accordingly, the oscillation results from an alternating activity of the fructose bisphosphate and the polysaccharide synthesis, both of which are coupled to glycolysis via the nucleotide pool. The processes in the phases are analyzed by calculating the rates of the reaction steps in the biochemical pathway.

Full text

PDF
369

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlfors C. E., Mansour T. E. Studies on heart phosphofructokinase. Desensitization of the enzyme to adenosine triphosphate inhibition. J Biol Chem. 1969 Mar 10;244(5):1247–1251. [PubMed] [Google Scholar]
  2. Alt J., Krisch K. Isolation of an inducible amidase from Pseudomonas acidovorans AE1. J Gen Microbiol. 1975 Apr;87(2):260–272. doi: 10.1099/00221287-87-2-260. [DOI] [PubMed] [Google Scholar]
  3. BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
  4. Boiteux A., Busse H. G. Circuit analysis of the oscillatory state in glycolysis. Biosystems. 1989;22(3):231–240. doi: 10.1016/0303-2647(89)90064-6. [DOI] [PubMed] [Google Scholar]
  5. Boiteux A., Goldbeter A., Hess B. Control of oscillating glycolysis of yeast by stochastic, periodic, and steady source of substrate: a model and experimental study. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3829–3833. doi: 10.1073/pnas.72.10.3829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boiteux A., Hess B., Sel'kov E. E. Creative functions of instability and oscillations in metabolic systems. Curr Top Cell Regul. 1980;17:171–203. doi: 10.1016/b978-0-12-152817-1.50010-9. [DOI] [PubMed] [Google Scholar]
  7. CHANCE B., SCHOENER B., ELSAESSER S. METABOLIC CONTROL PHENOMENA INVOLVED IN DAMPED SINUSOIDAL OSCILLATIONS OF REDUCED DIPHOSPHOPYRIDINE NUCLEOTIDE IN A CELL-FREE EXTRACT OF SACCHAROMYCES CARLSBERGENSIS. J Biol Chem. 1965 Jul;240:3170–3181. [PubMed] [Google Scholar]
  8. Campbell-Burk S. L., den Hollander J. A., Alger J. R., Shulman R. G. 31P NMR saturation-transfer and 13C NMR kinetic studies of glycolytic regulation during anaerobic and aerobic glycolysis. Biochemistry. 1987 Nov 17;26(23):7493–7500. doi: 10.1021/bi00397a044. [DOI] [PubMed] [Google Scholar]
  9. Chance B., Hess B., Betz A. DPNH oscillations in a cell-free extract of S. carlsbergensis. Biochem Biophys Res Commun. 1964 Jun 1;16(2):182–187. doi: 10.1016/0006-291x(64)90358-4. [DOI] [PubMed] [Google Scholar]
  10. Das J., Busse H. G. Long term oscillation in glycolysis. J Biochem. 1985 Mar;97(3):719–727. doi: 10.1093/oxfordjournals.jbchem.a135111. [DOI] [PubMed] [Google Scholar]
  11. Das J., Timm H., Busse H. G., Degn H. Oscillatory CO2 evolution in glycolysing yeast extracts. Yeast. 1990 May-Jun;6(3):255–261. doi: 10.1002/yea.320060310. [DOI] [PubMed] [Google Scholar]
  12. ESTABROOK R. W., MAITRA P. K. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal Biochem. 1962 May;3:369–382. doi: 10.1016/0003-2697(62)90065-9. [DOI] [PubMed] [Google Scholar]
  13. Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. 3. Purification and kinetics of beef heart phosphofructokinase. Arch Biochem Biophys. 1968 Apr;125(1):166–174. doi: 10.1016/0003-9861(68)90651-6. [DOI] [PubMed] [Google Scholar]
  14. Frenkel R. Control of reduced diphosphopyridine nucleotide oscillations in beef heart extracts. II. Oscillations of glycolytic intermediates and adenine nucleotides. Arch Biochem Biophys. 1968 Apr;125(1):157–165. doi: 10.1016/0003-9861(68)90650-4. [DOI] [PubMed] [Google Scholar]
  15. Gerhart J., Wu M., Kirschner M. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J Cell Biol. 1984 Apr;98(4):1247–1255. doi: 10.1083/jcb.98.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ghosh A., Chance B. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun. 1964 Jun 1;16(2):174–181. doi: 10.1016/0006-291x(64)90357-2. [DOI] [PubMed] [Google Scholar]
  17. HOMMES F. A. OSCILLATORY REDUCTIONS OF PYRIDINE NUCLEOTIDES DURING ANAEROBIC GLYCOLYSIS IN BREWERS' YEAST. Arch Biochem Biophys. 1964 Oct;108:36–46. doi: 10.1016/0003-9861(64)90352-2. [DOI] [PubMed] [Google Scholar]
  18. Hess B., Boiteux A., Krüger J. Cooperation of glycolytic enzymes. Adv Enzyme Regul. 1969;7:149–167. doi: 10.1016/0065-2571(69)90016-8. [DOI] [PubMed] [Google Scholar]
  19. Hess B., Boiteux A. Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hoppe Seylers Z Physiol Chem. 1968 Nov;349(11):1567–1574. doi: 10.1515/bchm2.1968.349.2.1567. [DOI] [PubMed] [Google Scholar]
  20. Hess B., Boiteux A. Oscillatory phenomena in biochemistry. Annu Rev Biochem. 1971;40:237–258. doi: 10.1146/annurev.bi.40.070171.001321. [DOI] [PubMed] [Google Scholar]
  21. Ibsen K. H., Schiller K. W. Oscillations of nucleotides and glycolytic intermediates in aerobic suspensions of Ehrlich ascites tumor cells. Biochim Biophys Acta. 1967 Mar 8;131(2):405–407. doi: 10.1016/0005-2728(67)90156-9. [DOI] [PubMed] [Google Scholar]
  22. Jacobsen H., Busse H. G., Havsteen B. H. Spontaneous spatiotemporal organization in yeast extracts. J Biol Chem. 1982 Apr 10;257(7):4001–4006. [PubMed] [Google Scholar]
  23. Jonnalagadda S. B., Becker J. U., Sel'kov E. E., Betz A. Flux regulation in glycogen-induced oscillatory glycolysis in cell-free extracts of Saccharomyces carlsbergensis. Biosystems. 1982;15(1):49–58. doi: 10.1016/0303-2647(82)90016-8. [DOI] [PubMed] [Google Scholar]
  24. Lavenda B., Nicolis G., Herschkowitz-Kaufman M. Chemical instabilities and relaxation oscillations. J Theor Biol. 1971 Aug;32(2):283–292. doi: 10.1016/0022-5193(71)90166-4. [DOI] [PubMed] [Google Scholar]
  25. Li Y., Goldbeter A. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness. Biophys J. 1989 Jan;55(1):125–145. doi: 10.1016/S0006-3495(89)82785-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RATLIFF R. L., WEAVER R. H., LARDY H. A., KUBY S. A. NUCLEOSIDE TRIPHOSPHATE-NUCLEOSIDE DIPHOSPHATE TRANSPHOSPHORYLASE (NUCLEOSIDE DIPHOSPHOKINASE). I. ISOLATION OF THE CRYSTALLINE ENZYME FROM BREWERS' YEAST. J Biol Chem. 1964 Jan;239:301–309. [PubMed] [Google Scholar]
  27. Rapp P. E. An atlas of cellular oscillators. J Exp Biol. 1979 Aug;81:281–306. doi: 10.1242/jeb.81.1.281. [DOI] [PubMed] [Google Scholar]
  28. Rapp P. E. Why are so many biological systems periodic? Prog Neurobiol. 1987;29(3):261–273. doi: 10.1016/0301-0082(87)90023-2. [DOI] [PubMed] [Google Scholar]
  29. Ross J., Schell M. Thermodynamic efficiency in nonlinear biochemical reactions. Annu Rev Biophys Biophys Chem. 1987;16:401–422. doi: 10.1146/annurev.bb.16.060187.002153. [DOI] [PubMed] [Google Scholar]
  30. Sander B. J., Oelshlegel F. J., Jr, Brewer G. J. Quantitative analysis of pyridine nucleotides in red blood cells: a single-step extraction procedure. Anal Biochem. 1976 Mar;71(1):29–36. doi: 10.1016/0003-2697(76)90006-3. [DOI] [PubMed] [Google Scholar]
  31. Swenson K. I., Farrell K. M., Ruderman J. V. The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell. 1986 Dec 26;47(6):861–870. doi: 10.1016/0092-8674(86)90801-9. [DOI] [PubMed] [Google Scholar]
  32. Tornheim K. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. J Biol Chem. 1988 Feb 25;263(6):2619–2624. [PubMed] [Google Scholar]
  33. Weaver J. C., Astumian R. D. The response of living cells to very weak electric fields: the thermal noise limit. Science. 1990 Jan 26;247(4941):459–462. doi: 10.1126/science.2300806. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES