Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Aug;60(2):475–490. doi: 10.1016/S0006-3495(91)82074-4

Redshift of the purple membrane absorption band and the deprotonation of tyrosine residues at high pH

Origin of the parallel photocycles of trans-bacteriorhodopsin

S P Balashov 1, R Govindjee 1, T G Ebrey 1
PMCID: PMC1260085  PMID: 19431801

Abstract

At high pH (> 8) the 570 nm absorption band of all-trans bacteriorhodopsin (bR) in purple membrane undergoes a small (1.5 nm) shift to longer wavelengths, which causes a maximal increase in absorption at 615 nm. The pK of the shift is 9.0 in the presence of 167 mM KCl, and its intrinsic pK is ∼8.3. The red shift of the trans-bR absorption spectrum correlates with the appearance of the fast component in the light-induced L to M transition, and absorption increases at 238 and 297 nm which are apparently caused by the deprotonation of a tyrosine residue and red shift of the absorption of tryptophan residues. This suggests that the deprotonation of a tyrosine residue with an exceptionally low pK (pKa ≈ 8.3) is responsible for the absorption shift of the chromophore band and fast M formation. The pH and salt dependent equilibrium between the two forms of bR, “neutral” and “alkaline,” bR ↔ bRa, results in two parallel photocycles of trans-bR at high pH, differing in the rate of the L to M transition. In the pH range 10-11.8 deprotonation of two more tyrosine residues is observed with pK's ∼ 10.3 and 11.3 (in 167 mM KCL). Two simple models discussing the role of the pH induced tyrosine deprotonation in the photocycle and proton pumping are presented.

It is suggested that the shifts of the absorption bands at high pH are due to the appearance of a negatively charged group inside the protein (tyrosinate) which causes electrochromic shifts of the chromophore and protein absorption bands due to the interaction with the dipole moments in the ground and excited states of bR (Stark effect). This effect gives evidence for a significant change in the dipole moment of the chromophore of bR upon excitation.

Under illumination alkaline bR forms, besides the usual photocycle intermediates, a long-lived species with absorption maximum at 500 nm (P500). P500 slowly converts into bRa in the dark. Upon illumination P500 is transformed into an intermediate having an absorption maximum at 380 nm (P380). P380 can be reconverted to P500 by blue light illumination or by incubation in the dark.

Full text

PDF
475

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames J. B., Mathies R. A. The role of back-reactions and proton uptake during the N----O transition in bacteriorhodopsin's photocycle: a kinetic resonance Raman study. Biochemistry. 1990 Aug 7;29(31):7181–7190. doi: 10.1021/bi00483a005. [DOI] [PubMed] [Google Scholar]
  2. Becher B. M., Cassim J. Y. Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem. 1975;5(2):161–178. doi: 10.1080/00327487508061568. [DOI] [PubMed] [Google Scholar]
  3. Birge R. R. Photophysics and molecular electronic applications of the rhodopsins. Annu Rev Phys Chem. 1990;41:683–733. doi: 10.1146/annurev.pc.41.100190.003343. [DOI] [PubMed] [Google Scholar]
  4. Butt H. J., Fendler K., Bamberg E., Tittor J., Oesterhelt D. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. EMBO J. 1989 Jun;8(6):1657–1663. doi: 10.1002/j.1460-2075.1989.tb03556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chernavskii D. S., Chizhov I. V., Lozier R. H., Murina T. M., Prokhorov A. M., Zubov B. V. Kinetic model of bacteriorhodopsin photocycle: pathway from M state to bR. Photochem Photobiol. 1989 May;49(5):649–653. doi: 10.1111/j.1751-1097.1989.tb08437.x. [DOI] [PubMed] [Google Scholar]
  6. Czégé J., Dér A., Zimányi L., Keszthelyi L. Restriction of motion of protein side chains during the photocycle of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7273–7277. doi: 10.1073/pnas.79.23.7273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dancsházy Z., Govindjee R., Ebrey T. G. Independent photocycles of the spectrally distinct forms of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6358–6361. doi: 10.1073/pnas.85.17.6358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donovan J. W. Changes in ultraviolet absorption produced by alteration of protein conformation. J Biol Chem. 1969 Apr 25;244(8):1961–1967. [PubMed] [Google Scholar]
  9. Druckmann S., Ottolenghi M., Pande A., Pande J., Callender R. H. Acid-base equilibrium of the Schiff base in bacteriorhodopsin. Biochemistry. 1982 Sep 28;21(20):4953–4959. doi: 10.1021/bi00263a019. [DOI] [PubMed] [Google Scholar]
  10. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  11. Hanamoto J. H., Dupuis P., El-Sayed M. A. On the protein (tyrosine)-chromophore (protonated Schiff base) coupling in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7083–7087. doi: 10.1073/pnas.81.22.7083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  13. Herskovits T. T., Sorensen M. Studies of the location of tyrosyl and tryptophyl residues in proteins. I. Solvent perturbation data of model compounds. Biochemistry. 1968 Jul;7(7):2523–2532. doi: 10.1021/bi00847a012. [DOI] [PubMed] [Google Scholar]
  14. Herzfeld J., Das Gupta S. K., Farrar M. R., Harbison G. S., McDermott A. E., Pelletier S. L., Raleigh D. P., Smith S. O., Winkel C., Lugtenburg J. Solid-state 13C NMR study of tyrosine protonation in dark-adapted bacteriorhodopsin. Biochemistry. 1990 Jun 12;29(23):5567–5574. doi: 10.1021/bi00475a022. [DOI] [PubMed] [Google Scholar]
  15. Hess B., Kuschmitz D. Kinetic interaction between aromatic residues and the retinal chromophore of bacteriorhodopsin during the photocycle. FEBS Lett. 1979 Apr 15;100(2):334–340. doi: 10.1016/0014-5793(79)80364-6. [DOI] [PubMed] [Google Scholar]
  16. Holz M., Drachev L. A., Mogi T., Otto H., Kaulen A. D., Heyn M. P., Skulachev V. P., Khorana H. G. Replacement of aspartic acid-96 by asparagine in bacteriorhodopsin slows both the decay of the M intermediate and the associated proton movement. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2167–2171. doi: 10.1073/pnas.86.7.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Honig B., Ebrey T. G. The structure and spectra of the chromophore of the visual pigments. Annu Rev Biophys Bioeng. 1974;3(0):151–177. doi: 10.1146/annurev.bb.03.060174.001055. [DOI] [PubMed] [Google Scholar]
  18. Jonas R., Koutalos Y., Ebrey T. G. Purple membrane: surface charge density and the multiple effect of pH and cations. Photochem Photobiol. 1990 Dec;52(6):1163–1177. doi: 10.1111/j.1751-1097.1990.tb08455.x. [DOI] [PubMed] [Google Scholar]
  19. Kalisky O., Ottolenghi M., Honig B., Korenstein R. Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping. Biochemistry. 1981 Feb 3;20(3):649–655. doi: 10.1021/bi00506a031. [DOI] [PubMed] [Google Scholar]
  20. Koutalos Y., Ebrey T. G., Gilson H. R., Honig B. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments. Biophys J. 1990 Aug;58(2):493–501. doi: 10.1016/S0006-3495(90)82394-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Q., Govindjee R., Ebrey T. G. A correlation between proton pumping and the bacteriorhodopsin photocycle. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7079–7082. doi: 10.1073/pnas.81.22.7079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu S. Y. Light-induced currents from oriented purple membrane: I. Correlation of the microsecond component (B2) with the L-M photocycle transition. Biophys J. 1990 May;57(5):943–950. doi: 10.1016/S0006-3495(90)82614-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mathies R. A., Brito Cruz C. H., Pollard W. T., Shank C. V. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science. 1988 May 6;240(4853):777–779. doi: 10.1126/science.3363359. [DOI] [PubMed] [Google Scholar]
  24. Mathies R., Stryer L. Retinal has a highly dipolar vertically excited singlet state: implications for vision. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2169–2173. doi: 10.1073/pnas.73.7.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maurel P., Hoa G. H., Douzou P. The pH dependence of the hydrolysis of benzoyl-L-arginine ethyl ester in cooled mixed solvents. J Biol Chem. 1975 Feb 25;250(4):1376–1382. [PubMed] [Google Scholar]
  26. Mogi T., Stern L. J., Hackett N. R., Khorana H. G. Bacteriorhodopsin mutants containing single tyrosine to phenylalanine substitutions are all active in proton translocation. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5595–5599. doi: 10.1073/pnas.84.16.5595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Muccio D. D., Cassim J. Y. Interpretations of the effects of pH on the spectra of purple membrane. J Mol Biol. 1979 Dec 15;135(3):595–609. doi: 10.1016/0022-2836(79)90166-9. [DOI] [PubMed] [Google Scholar]
  28. Móra S., Elödi P. Investigation of the near and far ultraviolet denaturation difference spectra of dehydrogenases. Eur J Biochem. 1968 Sep 24;5(4):574–582. doi: 10.1111/j.1432-1033.1968.tb00408.x. [DOI] [PubMed] [Google Scholar]
  29. Ort D. R., Parson W. W. Flash-induced volume changes of bacteriorhodopsin-containing membrane fragments and their relationship to proton movements and absorbance transients. J Biol Chem. 1978 Sep 10;253(17):6158–6164. [PubMed] [Google Scholar]
  30. Otto H., Marti T., Holz M., Mogi T., Lindau M., Khorana H. G., Heyn M. P. Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9228–9232. doi: 10.1073/pnas.86.23.9228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ovchinnikov Y. A., Abdulaev N. G., Feigina M. Y., Kiselev A. V., Lobanov N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett. 1979 Apr 15;100(2):219–224. doi: 10.1016/0014-5793(79)80338-5. [DOI] [PubMed] [Google Scholar]
  32. Parodi L. A., Lozier R. H., Bhattacharjee S. M., Nagle J. F. Testing kinetic models for the bacteriorhodopsin photocycle--II. Inclusion of an O to M backreaction. Photochem Photobiol. 1984 Oct;40(4):501–506. doi: 10.1111/j.1751-1097.1984.tb04624.x. [DOI] [PubMed] [Google Scholar]
  33. Permyakov E. A., Shnyrov V. L. A spectrofluorometric study of the environment of tryptophans in bacteriorhodopsin. Biophys Chem. 1983 Sep;18(2):145–152. doi: 10.1016/0301-4622(83)85009-1. [DOI] [PubMed] [Google Scholar]
  34. Roepe P., Ahl P. L., Das Gupta S. K., Herzfeld J., Rothschild K. J. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. Biochemistry. 1987 Oct 20;26(21):6696–6707. doi: 10.1021/bi00395a020. [DOI] [PubMed] [Google Scholar]
  35. Rothschild K. J., Braiman M. S., Mogi T., Stern L. J., Khorana H. G. Conserved amino acids in F-helix of bacteriorhodopsin form part of a retinal binding pocket. FEBS Lett. 1989 Jul 3;250(2):448–452. doi: 10.1016/0014-5793(89)80774-4. [DOI] [PubMed] [Google Scholar]
  36. Rothschild K. J., Gray D., Mogi T., Marti T., Braiman M. S., Stern L. J., Khorana H. G. Vibrational spectroscopy of bacteriorhodopsin mutants: chromophore isomerization perturbs tryptophan-86. Biochemistry. 1989 Aug 22;28(17):7052–7059. doi: 10.1021/bi00443a041. [DOI] [PubMed] [Google Scholar]
  37. Rothschild K. J., Roepe P., Ahl P. L., Earnest T. N., Bogomolni R. A., Das Gupta S. K., Mulliken C. M., Herzfeld J. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature. Proc Natl Acad Sci U S A. 1986 Jan;83(2):347–351. doi: 10.1073/pnas.83.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scherrer P., Stoeckenius W. Selective nitration of tyrosines-26 and -64 in bacteriorhodopsin with tetranitromethane. Biochemistry. 1984 Dec 4;23(25):6195–6202. doi: 10.1021/bi00320a047. [DOI] [PubMed] [Google Scholar]
  39. Soppa J., Otomo J., Straub J., Tittor J., Meessen S., Oesterhelt D. Bacteriorhodopsin mutants of Halobacterium sp. GRB. II. Characterization of mutants. J Biol Chem. 1989 Aug 5;264(22):13049–13056. [PubMed] [Google Scholar]
  40. Spudich J. L., McCain D. A., Nakanishi K., Okabe M., Shimizu N., Rodman H., Honig B., Bogomolni R. A. Chromophore/protein interaction in bacterial sensory rhodopsin and bacteriorhodopsin. Biophys J. 1986 Feb;49(2):479–483. doi: 10.1016/S0006-3495(86)83657-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tokunaga F., Iwasa T., Yoshizawa T. Photochemical reaction of bacteriorhodopsin. FEBS Lett. 1976 Dec 15;72(1):33–38. doi: 10.1016/0014-5793(76)80807-1. [DOI] [PubMed] [Google Scholar]
  42. Váró G., Lanyi J. K. Pathways of the rise and decay of the M photointermediate(s) of bacteriorhodopsin. Biochemistry. 1990 Mar 6;29(9):2241–2250. doi: 10.1021/bi00461a006. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES