Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Aug;60(2):508–512. doi: 10.1016/S0006-3495(91)82078-1

Spinodal lines and Flory-Huggins free-energies for solutions of human hemoglobins HbS and HbA.

P L San Biagio 1, M U Palma 1
PMCID: PMC1260089  PMID: 1912284

Abstract

Gelation of deoxygenated solutions of sickle-cell human Hemoglobin (HbS) is of high theoretical interest and it has serious pathological consequences. For this reason HbS is probably the most studied protein capable of self-organization. This notwithstanding, the location in the T, c plane of the region of thermodynamic instability of solutions of deoxy-HbS (as bounded by the spinodal line and as distinct from the gelation region) has remained unknown, along with related values of Flory-Huggins enthalpies and entropies. In the present work this information is derived from experiments for the two cases of (deoxy) HbS and of human adult hemoglobin (HbA). Experiments also show critical exponents having mean-field values, which validates a Flory-Huggins approach. Altogether, the present work offers a quantitative understanding of the thermodynamic effects of the genetic HbA----HbS mutation and it opens the way to similar quantitative evaluations of contributions of pH, salts, cosolutes, and single peptides (even for nongelling hemoglobins), and of potential therapeutic strategies.

Full text

PDF
508

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eaton W. A., Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem. 1990;40:63–279. doi: 10.1016/s0065-3233(08)60287-9. [DOI] [PubMed] [Google Scholar]
  2. Ferrone F. A., Hofrichter J., Eaton W. A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J Mol Biol. 1985 Jun 25;183(4):611–631. doi: 10.1016/0022-2836(85)90175-5. [DOI] [PubMed] [Google Scholar]
  3. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  4. Lumry R., Rajender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970;9(10):1125–1227. doi: 10.1002/bip.1970.360091002. [DOI] [PubMed] [Google Scholar]
  5. Madonia F., San Biagio P. L., Palma M. U., Schiliro' G., Musumeci S., Russo G. Photon scattering as a probe of microviscosity and channel size in gels such as sickle haemoglobin. 1983 Mar 31-Apr 6Nature. 302(5907):412–415. doi: 10.1038/302412a0. [DOI] [PubMed] [Google Scholar]
  6. Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
  7. Sciortino F., Palma M. U., Urry D. W., Prasad K. U. Nucleation and accretion of bioelastomeric fibers at biological temperatures and low concentrations. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1061–1066. doi: 10.1016/s0006-291x(88)80982-3. [DOI] [PubMed] [Google Scholar]
  8. Sciortino F., Urry D. W., Palma M. U., Prasad K. U. Self-assembly of a bioelastomeric structure: solution dynamics and the spinodal and coacervation lines. Biopolymers. 1990 Aug 15;29(10-11):1401–1407. doi: 10.1002/bip.360291007. [DOI] [PubMed] [Google Scholar]
  9. Thomson J. A., Schurtenberger P., Thurston G. M., Benedek G. B. Binary liquid phase separation and critical phenomena in a protein/water solution. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7079–7083. doi: 10.1073/pnas.84.20.7079. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES