Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Sep;60(3):721–727. doi: 10.1016/S0006-3495(91)82102-6

Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor.

G F Tomaselli 1, J T McLaughlin 1, M E Jurman 1, E Hawrot 1, G Yellen 1
PMCID: PMC1260116  PMID: 1718469

Abstract

The nicotinic acetylcholine receptor (AChR) is a pentameric transmembrane protein (alpha 2 beta gamma delta) that binds the neurotransmitter acetylcholine (ACh) and transduces this binding into the opening of a cation selective channel. The agonist, competitive antagonist, and snake toxin binding functions of the AChR are associated with the alpha subunit (Kao et al., 1984; Tzartos and Changeux, 1984; Wilson et al., 1985; Kao and Karlin, 1986; Pederson et al., 1986). We used site-directed mutagenesis and expression of AChR in Xenopus oocytes to identify amino acid residues critical for ligand binding and channel activation. Several mutations in the alpha subunit sequence were constructed based on information from sequence homology and from previous biochemical (Barkas et al., 1987; Dennis et al., 1988; Middleton and Cohen, 1990) and spectroscopic (Pearce and Hawrot, 1990; Pearce et al., 1990) studies. We have identified one mutation, Tyr190 to Phe (Y190F), that had a dramatic effect on ligand binding and channel activation. These mutant channels required more than 50-fold higher concentrations of ACh for channel activation than did wild type channels. This functional change is largely accounted for by a comparable shift in the agonist binding affinity, as assessed by the ability of ACh to compete with alpha-bungarotoxin binding. Other mutations at nearby conserved positions of the alpha subunit (H186F, P194S, Y198F) produce less dramatic changes in channel properties. Our results demonstrate that ligand binding and channel gating are separable properties of the receptor protein, and that Tyr190 appears to play a specific role in the receptor site for acetylcholine.

Full text

PDF
721

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson S. N., Li Y., Culver P., Taylor P. An analog of lophotoxin reacts covalently with Tyr190 in the alpha-subunit of the nicotinic acetylcholine receptor. J Biol Chem. 1989 Jul 25;264(21):12666–12672. [PubMed] [Google Scholar]
  2. Baldwin T. J., Yoshihara C. M., Blackmer K., Kintner C. R., Burden S. J. Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis. J Cell Biol. 1988 Feb;106(2):469–478. doi: 10.1083/jcb.106.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barkas T., Mauron A., Roth B., Alliod C., Tzartos S. J., Ballivet M. Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Science. 1987 Jan 2;235(4784):77–80. doi: 10.1126/science.2432658. [DOI] [PubMed] [Google Scholar]
  4. Bossy B., Ballivet M., Spierer P. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J. 1988 Mar;7(3):611–618. doi: 10.1002/j.1460-2075.1988.tb02854.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boulter J., Connolly J., Deneris E., Goldman D., Heinemann S., Patrick J. Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7763–7767. doi: 10.1073/pnas.84.21.7763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boulter J., Luyten W., Evans K., Mason P., Ballivet M., Goldman D., Stengelin S., Martin G., Heinemann S., Patrick J. Isolation of a clone coding for the alpha-subunit of a mouse acetylcholine receptor. J Neurosci. 1985 Sep;5(9):2545–2552. doi: 10.1523/JNEUROSCI.05-09-02545.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dennis M., Giraudat J., Kotzyba-Hibert F., Goeldner M., Hirth C., Chang J. Y., Lazure C., Chrétien M., Changeux J. P. Amino acids of the Torpedo marmorata acetylcholine receptor alpha subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry. 1988 Apr 5;27(7):2346–2357. doi: 10.1021/bi00407a016. [DOI] [PubMed] [Google Scholar]
  8. Dougherty D. A., Stauffer D. A. Acetylcholine binding by a synthetic receptor: implications for biological recognition. Science. 1990 Dec 14;250(4987):1558–1560. doi: 10.1126/science.2274786. [DOI] [PubMed] [Google Scholar]
  9. Dunn S. M., Raftery M. A. Activation and desensitization of Torpedo acetylcholine receptor: evidence for separate binding sites. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6757–6761. doi: 10.1073/pnas.79.22.6757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  11. KATZ B., THESLEFF S. A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol. 1957 Aug 29;138(1):63–80. doi: 10.1113/jphysiol.1957.sp005838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem. 1984 Oct 10;259(19):11662–11665. [PubMed] [Google Scholar]
  13. Kao P. N., Karlin A. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J Biol Chem. 1986 Jun 25;261(18):8085–8088. [PubMed] [Google Scholar]
  14. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacKinnon R., Yellen G. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science. 1990 Oct 12;250(4978):276–279. doi: 10.1126/science.2218530. [DOI] [PubMed] [Google Scholar]
  16. Maconochie D. J., Knight D. E. A method for making solution changes in the sub-millisecond range at the tip of a patch pipette. Pflugers Arch. 1989 Sep;414(5):589–596. doi: 10.1007/BF00580996. [DOI] [PubMed] [Google Scholar]
  17. McLaughlin J. T., Hawrot E. Structural characterization of alpha-bungarotoxin-binding proteins from Aplysia californica. Mol Pharmacol. 1989 May;35(5):593–598. [PubMed] [Google Scholar]
  18. Methfessel C., Witzemann V., Takahashi T., Mishina M., Numa S., Sakmann B. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch. 1986 Dec;407(6):577–588. doi: 10.1007/BF00582635. [DOI] [PubMed] [Google Scholar]
  19. Mishina M., Tobimatsu T., Imoto K., Tanaka K., Fujita Y., Fukuda K., Kurasaki M., Takahashi H., Morimoto Y., Hirose T. Location of functional regions of acetylcholine receptor alpha-subunit by site-directed mutagenesis. 1985 Jan 31-Feb 6Nature. 313(6001):364–369. doi: 10.1038/313364a0. [DOI] [PubMed] [Google Scholar]
  20. Nef P., Oneyser C., Alliod C., Couturier S., Ballivet M. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors. EMBO J. 1988 Mar;7(3):595–601. doi: 10.1002/j.1460-2075.1988.tb02852.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Noda M., Furutani Y., Takahashi H., Toyosato M., Tanabe T., Shimizu S., Kikyotani S., Kayano T., Hirose T., Inayama S. Cloning and sequence analysis of calf cDNA and human genomic DNA encoding alpha-subunit precursor of muscle acetylcholine receptor. 1983 Oct 27-Nov 2Nature. 305(5937):818–823. doi: 10.1038/305818a0. [DOI] [PubMed] [Google Scholar]
  22. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982 Oct 28;299(5886):793–797. doi: 10.1038/299793a0. [DOI] [PubMed] [Google Scholar]
  23. Oblas B., Singer R. H., Boyd N. D. Location of a polypeptide sequence within the alpha-subunit of the acetylcholine receptor containing the cholinergic binding site. Mol Pharmacol. 1986 Jun;29(6):649–656. [PubMed] [Google Scholar]
  24. Pearce S. F., Hawrot E. Intrinsic fluorescence of binding-site fragments of the nicotinic acetylcholine receptor: perturbations produced upon binding alpha-bungarotoxin. Biochemistry. 1990 Nov 27;29(47):10649–10659. doi: 10.1021/bi00499a011. [DOI] [PubMed] [Google Scholar]
  25. Pearce S. F., Preston-Hurlburt P., Hawrot E. The role of tyrosine at the ligand-binding site of the nicotinic acetylcholine receptor. Proc Biol Sci. 1990 Sep 22;241(1302):207–213. doi: 10.1098/rspb.1990.0087. [DOI] [PubMed] [Google Scholar]
  26. Pedersen S. E., Dreyer E. B., Cohen J. B. Location of ligand-binding sites on the nicotinic acetylcholine receptor alpha-subunit. J Biol Chem. 1986 Oct 15;261(29):13735–13743. [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Silman I., Karlin A. Acetylcholine receptor: covalent attachment of depolarizing groups at the active site. Science. 1969 Jun 20;164(3886):1420–1421. doi: 10.1126/science.164.3886.1420. [DOI] [PubMed] [Google Scholar]
  29. Sine S. M., Steinbach J. H. Agonists block currents through acetylcholine receptor channels. Biophys J. 1984 Aug;46(2):277–283. doi: 10.1016/S0006-3495(84)84022-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sine S. M., Taylor P. The relationship between agonist occupation and the permeability response of the cholinergic receptor revealed by bound cobra alpha-toxin. J Biol Chem. 1980 Nov 10;255(21):10144–10156. [PubMed] [Google Scholar]
  31. Sine S., Taylor P. Functional consequences of agonist-mediated state transitions in the cholinergic receptor. Studies in cultured muscle cells. J Biol Chem. 1979 May 10;254(9):3315–3325. [PubMed] [Google Scholar]
  32. Tomaselli G. F., Feldman A. M., Yellen G., Marban E. Human cardiac sodium channels expressed in Xenopus oocytes. Am J Physiol. 1990 Mar;258(3 Pt 2):H903–H906. doi: 10.1152/ajpheart.1990.258.3.H903. [DOI] [PubMed] [Google Scholar]
  33. Tzartos S. J., Changeux J. P. Lipid-dependent recovery of alpha-bungarotoxin and monoclonal antibody binding to the purified alpha-subunit from Torpedo marmorata acetylcholine receptor. Enhancement by noncompetitive channel blockers. J Biol Chem. 1984 Sep 25;259(18):11512–11519. [PubMed] [Google Scholar]
  34. Wada K., Ballivet M., Boulter J., Connolly J., Wada E., Deneris E. S., Swanson L. W., Heinemann S., Patrick J. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science. 1988 Apr 15;240(4850):330–334. doi: 10.1126/science.2832952. [DOI] [PubMed] [Google Scholar]
  35. Wilson P. T., Lentz T. L., Hawrot E. Determination of the primary amino acid sequence specifying the alpha-bungarotoxin binding site on the alpha subunit of the acetylcholine receptor from Torpedo californica. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8790–8794. doi: 10.1073/pnas.82.24.8790. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES