Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Oct;60(4):761–769. doi: 10.1016/S0006-3495(91)82110-5

Formation of ion-conducting channels by the membrane attack complex proteins of complement.

J W Shiver 1, J R Dankert 1, A F Esser 1
PMCID: PMC1260127  PMID: 1720679

Abstract

The effects of sequential additions of purified human complement proteins C5b-6, C7, C8, and C9 to assemble the C5b-9 membrane attack complex (MAC) of complement on electrical properties of planar lipid bilayers have been analyzed. The high resistance state of such membranes was impaired after assembly of large numbers of C5b-8 complexes as indicated by the appearance of rapidly fluctuating membrane currents. The C5b-8 induced conductance was voltage dependent and rectifying at higher voltages. Addition of C9 to membranes with very few C5b-8 complexes caused appearance of few discrete single channels of low conductance (5-25 pS) but after some time very large (greater than 0.5 nS) jumps in conductance could be monitored. This high macroscopic conductance state was dominated by 125-pS channels having a lifetime of approximately 1 s. The high conductance state was not stable and declined again after a period of 1-3 h. Incorporation of MAC extracted from complement-lysed erythrocytes into liposomes and subsequent transformation of such complexes into planar bilayers via an intermediate monolayer state resulted in channels with characteristics similar to the ones produced by sequential assembly of C5b-9. Comparison of the high-conductance C5b-9 channel characteristics (lifetime, ion preference, ionic-strength dependence) with those produced by poly(C9) (the circular or tubular aggregation product of C9) as published by Young, J.D.-E., Z.A. Cohn, and E.R. Podack. (1986. Science [Wash. DC]. 233:184-190.) indicates that the two are significantly different.

Full text

PDF
761

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benz R., Schmid A., Wiedmer T., Sims P. J. Single-channel analysis of the conductance fluctuations induced in lipid bilayer membranes by complement proteins C5b-9. J Membr Biol. 1986;94(1):37–45. doi: 10.1007/BF01901011. [DOI] [PubMed] [Google Scholar]
  2. Bhakdi S., Tranum-Jensen J. Molecular nature of the complement lesion. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5655–5659. doi: 10.1073/pnas.75.11.5655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyle M. D. Is the membrane attack complex of complement an enzyme? Mol Cell Biochem. 1984;61(1):5–15. doi: 10.1007/BF00239603. [DOI] [PubMed] [Google Scholar]
  4. Carney D. F., Koski C. L., Shin M. L. Elimination of terminal complement intermediates from the plasma membrane of nucleated cells: the rate of disappearance differs for cells carrying C5b-7 or C5b-8 or a mixture of C5b-8 with a limited number of C5b-9. J Immunol. 1985 Mar;134(3):1804–1809. [PubMed] [Google Scholar]
  5. Dankert J. R., Shiver J. W., Esser A. F. Ninth component of complement: self-aggregation and interaction with lipids. Biochemistry. 1985 May 21;24(11):2754–2762. doi: 10.1021/bi00332a024. [DOI] [PubMed] [Google Scholar]
  6. Esser A. F., Kolb W. P., Podack E. R., Müller-Eberhard H. J. Molecular reorganization of lipid bilayers by complement: a possible mechanism for membranolysis. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1410–1414. doi: 10.1073/pnas.76.3.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Esser A. F., Sodetz J. M. Membrane attack complex proteins C5b-6, C7, C8, and C9 of human complement. Methods Enzymol. 1988;162:551–578. doi: 10.1016/0076-6879(88)62103-3. [DOI] [PubMed] [Google Scholar]
  8. Gee A. P., Boyle M. D., Borsos T. Distinction between C8-mediated and C8/C9-mediated hemolysis on the basis of independent 86Rb and hemoglobin release. J Immunol. 1980 Apr;124(4):1905–1910. [PubMed] [Google Scholar]
  9. Jackson M. B., Stephens C. L., Lecar H. Single channel currents induced by complement in antibody-coated cell membranes. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6421–6425. doi: 10.1073/pnas.78.10.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kinsky S. C. Antibody-complement interaction with lipid model membranes. Biochim Biophys Acta. 1972 Feb 14;265(1):1–23. doi: 10.1016/0304-4157(72)90017-2. [DOI] [PubMed] [Google Scholar]
  11. Lachmann P. J., Thompson R. A. Reactive lysis: the complement-mediated lysis of unsensitized cells. II. The characterization of activated reactor as C56 and the participation of C8 and C9. J Exp Med. 1970 Apr 1;131(4):643–657. doi: 10.1084/jem.131.4.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li C. K., Levine R. P. Resealability as evidence that the functional complement and osmotic membrane lesions are distinct. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1346–1351. doi: 10.1016/0006-291x(79)91214-2. [DOI] [PubMed] [Google Scholar]
  13. Mayer M. M. Complement. Historical perspectives and some current issues. Complement. 1984;1(1):2–26. [PubMed] [Google Scholar]
  14. McCloskey M. A., Dankert J. R., Esser A. F. Assembly of complement components C5b-8 and C5b-9 on lipid bilayer membranes: visualization by freeze-etch electron microscopy. Biochemistry. 1989 Jan 24;28(2):534–540. doi: 10.1021/bi00428a019. [DOI] [PubMed] [Google Scholar]
  15. Menestrina G., Pasquali F. Reconstitution of the complement channel into lipid vesicles and planar bilayers starting from the fluid phase complex. Biosci Rep. 1985 Feb;5(2):129–136. doi: 10.1007/BF01117059. [DOI] [PubMed] [Google Scholar]
  16. Michaels D. W., Abramovitz A. S., Hammer C. H., Mayer M. M. Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2852–2856. doi: 10.1073/pnas.73.8.2852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Montal M., Mueller P. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3561–3566. doi: 10.1073/pnas.69.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morgan B. P., Dankert J. R., Esser A. F. Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis. J Immunol. 1987 Jan 1;138(1):246–253. [PubMed] [Google Scholar]
  19. Müller-Eberhard H. J. The membrane attack complex of complement. Annu Rev Immunol. 1986;4:503–528. doi: 10.1146/annurev.iy.04.040186.002443. [DOI] [PubMed] [Google Scholar]
  20. Ohanian S. H., Schlager S. I. Humoral immune killing of nucleated cells: mechanisms of complement-mediated attack and target cell defense. Crit Rev Immunol. 1981 Jan;1(3):165–209. [PubMed] [Google Scholar]
  21. Podack E. R., Biesecker G., Müller-Eberhard H. J. Membrane attack complex of complement: generation of high-affinity phospholipid binding sites by fusion of five hydrophilic plasma proteins. Proc Natl Acad Sci U S A. 1979 Feb;76(2):897–901. doi: 10.1073/pnas.76.2.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Podack E. R. Molecular composition of the tubular structure of the membrane attack complex of complement. J Biol Chem. 1984 Jul 10;259(13):8641–8647. [PubMed] [Google Scholar]
  23. Podack E. R., Tschopp J. Polymerization of the ninth component of complement (C9): formation of poly(C9) with a tubular ultrastructure resembling the membrane attack complex of complement. Proc Natl Acad Sci U S A. 1982 Jan;79(2):574–578. doi: 10.1073/pnas.79.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shin M. L., Paznekas W. A., Mayer M. M. On the mechanism of membrane damage by complement: the effect of length and unsaturation of the acyl chains in liposomal bilayers and the effect of cholesterol concentration in sheep erythrocyte and liposomal membranes. J Immunol. 1978 Jun;120(6):1996–2002. [PubMed] [Google Scholar]
  25. Shiver J. W., Dankert J. R., Donovan J. J., Esser A. F. The ninth component of human complement (C9). Functional activity of the b fragment. J Biol Chem. 1986 Jul 25;261(21):9629–9636. [PubMed] [Google Scholar]
  26. Stephens C. L., Henkart P. A. Electrical measurements of complement-mediated membrane damage in cultured nerve and muscle cells. J Immunol. 1979 Feb;122(2):455–458. [PubMed] [Google Scholar]
  27. Stolfi R. L. Immune lytic transformation: a state of irreversible damage generated as a result of the reaction of the eighth component in the guinea pig complement system. J Immunol. 1968 Jan;100(1):46–54. [PubMed] [Google Scholar]
  28. Tschopp J. Circular polymerization of the membranolytic ninth component of complement. Dependence on metal ions. J Biol Chem. 1984 Aug 25;259(16):10569–10573. [PubMed] [Google Scholar]
  29. Tschopp J., Podack E. R., Müller-Eberhard H. J. Ultrastructure of the membrane attack complex of complement: detection of the tetramolecular C9-polymerizing complex C5b-8. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7474–7478. doi: 10.1073/pnas.79.23.7474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tschopp J. Ultrastructure of the membrane attack complex of complement. Heterogeneity of the complex caused by different degree of C9 polymerization. J Biol Chem. 1984 Jun 25;259(12):7857–7863. [PubMed] [Google Scholar]
  31. Ware C. F., Wetsel R. A., Kolb W. P. Physicochemical characterization of fluid phase (SC5b-9) and membrane derived (MC5b-9) attack complexes of human complement purified by immunoadsorbent affinity chromatography or selective detergent extraction. Mol Immunol. 1981 Jun;18(6):521–531. doi: 10.1016/0161-5890(81)90130-9. [DOI] [PubMed] [Google Scholar]
  32. Young J. D., Cohn Z. A., Podack E. R. The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science. 1986 Jul 11;233(4760):184–190. doi: 10.1126/science.2425429. [DOI] [PubMed] [Google Scholar]
  33. Young J. D., Young T. M. Channel fluctuations induced by membrane attack complex C5B-9. Mol Immunol. 1990 Oct;27(10):1001–1007. doi: 10.1016/0161-5890(90)90123-h. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES