Abstract
A general effect by dissolved electrolytes to destabilize the curvature of bilayer tubules prepared from the diacetylenic phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine is not found. This observation discounts the role of an electrostatic interaction between polarization charges on the edges of a ferroelectric bilayer as a means by which the cylindrical curvature may be stabilized in these structures (de Gennes, P. G. 1987. C. R. Acad. Sci. Paris. 304:259-263). The solution-mediated ionic interactions of electrolytes with this phospholipid appear not to influence significantly the relative stability of the crystalline state of the tubule, but at high levels of a few salts, may affect the nucleation and growth of the crystalline bilayer. Curvature of the bilayer in these tubular structures apparently derives from an interaction that is not very sensitive to the presence of electrolytes. Cylindrical curvature may alternatively arise from a bending force within the bilayer that is intrinsic to the anisotropic packing of the lipid molecules (Helfrich, W., and J. Prost. 1988. Phys. Rev. A38:3065-3068; Chappell, J. S., and P. Yager. 1991. Chem. Phys. Lipids. In press), and may therefore be largely determined by the packing interactions within the hydrophobic region of the tubular bilayer.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akutsu H., Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry. 1981 Dec 22;20(26):7366–7373. doi: 10.1021/bi00529a007. [DOI] [PubMed] [Google Scholar]
- Bartucci R., Gulfo N., Sportelli L. Effect of high electrolyte concentration on the phase transition behaviour of DPPC vesicles: a spin label study. Biochim Biophys Acta. 1990 Jun 27;1025(2):117–121. doi: 10.1016/0005-2736(90)90087-5. [DOI] [PubMed] [Google Scholar]
- Chapman D., Peel W. E., Kingston B., Lilley T. H. Lipid phase transitions in model biomembranes. The effect of ions on phosphatidylcholine bilayers. Biochim Biophys Acta. 1977 Jan 21;464(2):260–275. doi: 10.1016/0005-2736(77)90002-5. [DOI] [PubMed] [Google Scholar]
- Cunningham B. A., Shimotake J. E., Tamura-Lis W., Mastran T., Kwok W. M., Kauffman J. W., Lis L. J. The influence of ion species on phosphatidylcholine bilayer structure and packing. Chem Phys Lipids. 1986 Jan;39(1-2):135–143. doi: 10.1016/0009-3084(86)90107-6. [DOI] [PubMed] [Google Scholar]
- Hatefi Y., Hanstein W. G. Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1129–1136. doi: 10.1073/pnas.62.4.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helfrich W, Prost J. Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3065–3068. doi: 10.1103/physreva.38.3065. [DOI] [PubMed] [Google Scholar]
- Inoko Y., Yamaguchi T., Furuya K., Mitsui T. Effects of cations on dipalmitoyl phosphatidylcholine/cholesterol/water systems. Biochim Biophys Acta. 1975 Nov 17;413(1):24–32. doi: 10.1016/0005-2736(75)90055-3. [DOI] [PubMed] [Google Scholar]
- Lis L. J., Lis W. T., Parsegian V. A., Rand R. P. Adsorption of divalent cations to a variety of phosphatidylcholine bilayers. Biochemistry. 1981 Mar 31;20(7):1771–1777. doi: 10.1021/bi00510a010. [DOI] [PubMed] [Google Scholar]
- Lis L. J., Parsegian V. A., Rand R. P. Binding of divalent cations of dipalmitoylphosphatidylcholine bilayers and its effect on bilayer interaction. Biochemistry. 1981 Mar 31;20(7):1761–1770. doi: 10.1021/bi00510a009. [DOI] [PubMed] [Google Scholar]
- Rhodes D. G., Blechner S. L., Yager P., Schoen P. E. Structure of polymerizable lipid bilayers. I--1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine, a tubule-forming phosphatidylcholine. Chem Phys Lipids. 1988 Nov;49(1-2):39–47. doi: 10.1016/0009-3084(88)90062-x. [DOI] [PubMed] [Google Scholar]
- Rudolph A. S., Burke T. G. A Fourier-transform infrared spectroscopic study of the polymorphic phase behavior of 1,2- bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine; a polymerizable lipid which forms novel microstructures. Biochim Biophys Acta. 1987 Sep 3;902(3):349–359. doi: 10.1016/0005-2736(87)90203-3. [DOI] [PubMed] [Google Scholar]
- SHAH D. O., SCHULMAN J. H. BINDING OF METAL IONS TO MONOLAYERS OF LECITHINS, PLASMALOGEN, CARDIOLIPIN, AND DICETYL PHOSPHATE. J Lipid Res. 1965 Jul;6:341–349. [PubMed] [Google Scholar]
- Simon S. A., Lis L. J., Kauffman J. W., Macdonald R. C. A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine. Biochim Biophys Acta. 1975 Feb 14;375(3):317–326. doi: 10.1016/0005-2736(75)90350-8. [DOI] [PubMed] [Google Scholar]
- Yager D. R., Bachenheimer S. L. Synthesis and metabolism of cellular transcripts in HSV-1 infected cells. Virus Genes. 1988 Mar;1(2):135–148. doi: 10.1007/BF00555933. [DOI] [PubMed] [Google Scholar]
- Yager P., Schoen P. E., Davies C., Price R., Singh A. Structure of lipid tubules formed from a polymerizable lecithin. Biophys J. 1985 Dec;48(6):899–906. doi: 10.1016/S0006-3495(85)83852-2. [DOI] [PMC free article] [PubMed] [Google Scholar]





