Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Nov;60(5):1088–1100. doi: 10.1016/S0006-3495(91)82145-2

Ca2+ movement in smooth muscle cells studied with one- and two-dimensional diffusion models.

G Kargacin 1, F S Fay 1
PMCID: PMC1260165  PMID: 1662084

Abstract

Although many of the processes involved in the regulation of Ca2+ in smooth muscle have been studied separately, it is still not well known how they are integrated into an overall regulatory system. To examine this question and to study the time course and spatial distribution of Ca2+ in cells after activation, one- and two-dimensional diffusion models of the cell that included the major processes thought to be involved in Ca regulation were developed. The models included terms describing Ca influx, buffering, plasma membrane extrusion, and release and reuptake by the sarcoplasmic reticulum. When possible these processes were described with known parameters. Simulations with the models indicated that the sarcoplasmic reticulum Ca pump is probably primarily responsible for the removal of cytoplasmic Ca2+ after cell activation. The plasma membrane Ca-ATPase and Na/Ca exchange appeared more likely to be involved in the long term regulation of Ca2+. Pumping processes in general had little influence on the rate of rise of Ca transients. The models also showed that spatial inhomogeneities in Ca2+ probably occur in cells during the spread of the Ca signal following activation and during the subsequent return of Ca2+ to its resting level.

Full text

PDF
1088

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Backx P. H., de Tombe P. P., Van Deen J. H., Mulder B. J., ter Keurs H. E. A model of propagating calcium-induced calcium release mediated by calcium diffusion. J Gen Physiol. 1989 May;93(5):963–977. doi: 10.1085/jgp.93.5.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker P. L., Singer J. J., Walsh J. V., Jr, Fay F. S. Regulation of calcium concentration in voltage-clamped smooth muscle cells. Science. 1989 Apr 14;244(4901):211–214. doi: 10.1126/science.2704996. [DOI] [PubMed] [Google Scholar]
  3. Bond M., Shuman H., Somlyo A. P., Somlyo A. V. Total cytoplasmic calcium in relaxed and maximally contracted rabbit portal vein smooth muscle. J Physiol. 1984 Dec;357:185–201. doi: 10.1113/jphysiol.1984.sp015496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cannell M. B., Allen D. G. Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J. 1984 May;45(5):913–925. doi: 10.1016/S0006-3495(84)84238-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  6. Devine C. E., Somlyo A. V., Somlyo A. P. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972 Mar;52(3):690–718. doi: 10.1083/jcb.52.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eggermont J. A., Vrolix M., Raeymaekers L., Wuytack F., Casteels R. Ca2+-transport ATPases of vascular smooth muscle. Circ Res. 1988 Feb;62(2):266–278. doi: 10.1161/01.res.62.2.266. [DOI] [PubMed] [Google Scholar]
  8. Fliegel L., Burns K., MacLennan D. H., Reithmeier R. A., Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Dec 25;264(36):21522–21528. [PubMed] [Google Scholar]
  9. Fliegel L., Burns K., Opas M., Michalak M. The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta. 1989 Jun 26;982(1):1–8. doi: 10.1016/0005-2736(89)90166-1. [DOI] [PubMed] [Google Scholar]
  10. Iino M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gen Physiol. 1989 Aug;94(2):363–383. doi: 10.1085/jgp.94.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kargacin G. J., Detwiler P. B. Light-evoked contraction of the photosensitive iris of the frog. J Neurosci. 1985 Nov;5(11):3081–3087. doi: 10.1523/JNEUROSCI.05-11-03081.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kargacin G. J., Fay F. S. Physiological and structural properties of saponin-skinned single smooth muscle cells. J Gen Physiol. 1987 Jul;90(1):49–73. doi: 10.1085/jgp.90.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kargacin M. E., Scheid C. R., Honeyman T. W. Continuous monitoring of Ca2+ uptake in membrane vesicles with fura-2. Am J Physiol. 1988 Nov;255(5 Pt 1):C694–C698. doi: 10.1152/ajpcell.1988.255.5.C694. [DOI] [PubMed] [Google Scholar]
  15. Kushmerick M. J., Podolsky R. J. Ionic mobility in muscle cells. Science. 1969 Dec 5;166(3910):1297–1298. doi: 10.1126/science.166.3910.1297. [DOI] [PubMed] [Google Scholar]
  16. Lagnado L., McNaughton P. A. Electrogenic properties of the Na:Ca exchange. J Membr Biol. 1990 Feb;113(3):177–191. doi: 10.1007/BF01870070. [DOI] [PubMed] [Google Scholar]
  17. Langton P. D., Burke E. P., Sanders K. M. Participation of Ca currents in colonic electrical activity. Am J Physiol. 1989 Sep;257(3 Pt 1):C451–C460. doi: 10.1152/ajpcell.1989.257.3.C451. [DOI] [PubMed] [Google Scholar]
  18. Lucchesi P. A., Cooney R. A., Mangsen-Baker C., Honeyman T. W., Scheid C. R. Assessment of transport capacity of plasmalemmal Ca2+ pump in smooth muscle. Am J Physiol. 1988 Aug;255(2 Pt 1):C226–C236. doi: 10.1152/ajpcell.1988.255.2.C226. [DOI] [PubMed] [Google Scholar]
  19. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sala F., Hernández-Cruz A. Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J. 1990 Feb;57(2):313–324. doi: 10.1016/S0006-3495(90)82533-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schatzmann H. J. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol. 1989;51:473–485. doi: 10.1146/annurev.ph.51.030189.002353. [DOI] [PubMed] [Google Scholar]
  22. Schnetkamp P. P., Basu D. K., Szerencsei R. T. Na+-Ca2+ exchange in bovine rod outer segments requires and transports K+. Am J Physiol. 1989 Jul;257(1 Pt 1):C153–C157. doi: 10.1152/ajpcell.1989.257.1.C153. [DOI] [PubMed] [Google Scholar]
  23. Walsh J. V., Jr, Singer J. J. Calcium action potentials in single freshly isolated smooth muscle cells. Am J Physiol. 1980 Nov;239(5):C162–C174. doi: 10.1152/ajpcell.1980.239.5.C162. [DOI] [PubMed] [Google Scholar]
  24. Williams D. A., Fogarty K. E., Tsien R. Y., Fay F. S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature. 1985 Dec 12;318(6046):558–561. doi: 10.1038/318558a0. [DOI] [PubMed] [Google Scholar]
  25. Wuytack F., Kanmura Y., Eggermont J. A., Raeymaekers L., Verbist J., Hartweg D., Gietzen K., Casteels R. Smooth muscle expresses a cardiac/slow muscle isoform of the Ca2+-transport ATPase in its endoplasmic reticulum. Biochem J. 1989 Jan 1;257(1):117–123. doi: 10.1042/bj2570117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wuytack F., Raeymaekers L., Verbist J., Jones L. R., Casteels R. Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin. Biochim Biophys Acta. 1987 May 29;899(2):151–158. doi: 10.1016/0005-2736(87)90395-6. [DOI] [PubMed] [Google Scholar]
  27. Yasui K., Kimura J. Is potassium co-transported by the cardiac Na-Ca exchange? Pflugers Arch. 1990 Jan;415(4):513–515. doi: 10.1007/BF00373636. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES