Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1991 Dec;60(6):1309–1314. doi: 10.1016/S0006-3495(91)82168-3

Anesthetic inhibition of firefly luciferase, a protein model for general anesthesia, does not exhibit pressure reversal.

G W Moss 1, W R Lieb 1, N P Franks 1
PMCID: PMC1260191  PMID: 1777560

Abstract

The surprising observation that pressures of the order of 150 atmospheres can restore consciousness to an anesthetized animal has long been central to theories of the molecular mechanisms underlying general anesthesia. We have constructed a high-pressure gas chamber to test for "pressure reversal" of the best available protein model of general anesthetic target sites: the pure enzyme firefly luciferase, which accounts extremely well for animal potencies (over a 100,000-fold range). We found no significant pressure reversal for a variety of anesthetics of differing size and polarity. It thus appears that either firefly luciferase is not an adequate model for general anesthetic target sites or that pressure and anesthetics act at different molecular sites in the central nervous system.

Full text

PDF
1309

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel A., Gratton D. A., Halsey M. J., Wardley-Smith B. Pressure reversal of the effect of urethane on the evoked somatosensory cortical response in the rat. Br J Pharmacol. 1980 Oct;70(2):241–247. doi: 10.1111/j.1476-5381.1980.tb07929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boggs J. M., Yoong T., Hsia J. C. Site and mechanism of anesthetic action. I. Effect of anesthetics and pressure on fluidity of spin-labeled lipid vesicles. Mol Pharmacol. 1976 Jan;12(1):127–135. [PubMed] [Google Scholar]
  3. Branchini B. R., Marschner T. M., Montemurro A. M. A convenient affinity chromatography-based purification of firefly luciferase. Anal Biochem. 1980 May 15;104(2):386–396. doi: 10.1016/0003-2697(80)90089-5. [DOI] [PubMed] [Google Scholar]
  4. Curry S., Lieb W. R., Franks N. P. Effects of general anesthetics on the bacterial luciferase enzyme from Vibrio harveyi: an anesthetic target site with differential sensitivity. Biochemistry. 1990 May 15;29(19):4641–4652. doi: 10.1021/bi00471a020. [DOI] [PubMed] [Google Scholar]
  5. Dluzewski A. R., Halsey M. J., Simmonds A. C. Membrane interactions with general and local anaesthetics: a review of molecular hypotheses of anaesthesia. Mol Aspects Med. 1983;6(6):461–573. doi: 10.1016/0098-2997(83)90001-8. [DOI] [PubMed] [Google Scholar]
  6. Dodson B. A., Furmaniuk Z. W., Jr, Miller K. W. The physiological effects of hydrostatic pressure are not equivalent to those of helium pressure on Rana pipiens. J Physiol. 1985 May;362:233–244. doi: 10.1113/jphysiol.1985.sp015673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finch E. D., Kiesow L. A. Pressure, anesthetics, and membrane structure: a spin-probe study. Undersea Biomed Res. 1979 Mar;6(1):41–53. [PubMed] [Google Scholar]
  8. Franks N. P., Lieb W. R. Do general anaesthetics act by competitive binding to specific receptors? Nature. 1984 Aug 16;310(5978):599–601. doi: 10.1038/310599a0. [DOI] [PubMed] [Google Scholar]
  9. Franks N. P., Lieb W. R. Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature. 1985 Jul 25;316(6026):349–351. doi: 10.1038/316349a0. [DOI] [PubMed] [Google Scholar]
  10. Franks N. P., Lieb W. R. Molecular mechanisms of general anaesthesia. Nature. 1982 Dec 9;300(5892):487–493. doi: 10.1038/300487a0. [DOI] [PubMed] [Google Scholar]
  11. Franks N. P., Lieb W. R. Where do general anaesthetics act? Nature. 1978 Jul 27;274(5669):339–342. doi: 10.1038/274339a0. [DOI] [PubMed] [Google Scholar]
  12. Halsey M. J., Wardley-Smith B., Green C. J. Pressure reversal of general anaesthesia--a multi-site expansion hypothesis. Br J Anaesth. 1978 Nov;50(11):1091–1097. doi: 10.1093/bja/50.11.1091. [DOI] [PubMed] [Google Scholar]
  13. Halsey M. J., Wardley-Smith B. Pressure reversal of narocsis produced by anaesthetics, narcotics and tranquillisers. Nature. 1975 Oct 30;257(5529):811–813. doi: 10.1038/257811a0. [DOI] [PubMed] [Google Scholar]
  14. JOHNSON F. H., FLAGLER E. A. Activity of narcotized amphibian larvae under hydrostatic pressure. J Cell Physiol. 1951 Feb;37(1):15–25. doi: 10.1002/jcp.1030370103. [DOI] [PubMed] [Google Scholar]
  15. JOHNSON F. H., FLAGLER E. A. Hydrostatic pressure reversal of narcosis in tadpoles. Science. 1950 Jul 21;112(2899):91–92. doi: 10.1126/science.112.2899.91-a. [DOI] [PubMed] [Google Scholar]
  16. Kamaya H., Ueda I., Moore P. S., Eyring H. Antagonism between high pressure and anesthetics in the thermal phase-transition of dipalmitoyl phosphatidylcholine bilayer. Biochim Biophys Acta. 1979 Jan 5;550(1):131–137. doi: 10.1016/0005-2736(79)90121-4. [DOI] [PubMed] [Google Scholar]
  17. Kendig J. J., Cohen E. N. Neuromuscular function at hyperbaric pressures: pressure-anesthetic interactions. Am J Physiol. 1976 May;230(5):1244–1249. doi: 10.1152/ajplegacy.1976.230.5.1244. [DOI] [PubMed] [Google Scholar]
  18. Kendig J. J., Trudell J. R., Cohen E. N. Effects of pressure and anesthetics on conduction and synaptic transmission. J Pharmacol Exp Ther. 1975 Nov;195(2):216–224. [PubMed] [Google Scholar]
  19. LaBella F. S. Is there a general anesthesia receptor. Can J Physiol Pharmacol. 1981 May;59(5):432–442. doi: 10.1139/y81-067. [DOI] [PubMed] [Google Scholar]
  20. Lever M. J., Miller K. W., Paton W. D., Smith E. B. Pressure reversal of anaesthesia. Nature. 1971 Jun 11;231(5302):368–371. doi: 10.1038/231368a0. [DOI] [PubMed] [Google Scholar]
  21. Mastrangelo C. J., Kendig J. J., Trudell J. R., Cohen E. N. Nerve membrane lipid fluidity: opposing effects of high pressure and ethanol. Undersea Biomed Res. 1979 Mar;6(1):47–53. [PubMed] [Google Scholar]
  22. Miller K. W., Paton W. D., Smith R. A., Smith E. B. The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol. 1973 Mar;9(2):131–143. [PubMed] [Google Scholar]
  23. Miller K. W. The nature of the site of general anesthesia. Int Rev Neurobiol. 1985;27:1–61. doi: 10.1016/s0074-7742(08)60555-3. [DOI] [PubMed] [Google Scholar]
  24. Miller K. W., Wilson M. W., Smith R. A. Pressure resolves two sites of action of inert gases. Mol Pharmacol. 1978 Sep;14(5):950–959. [PubMed] [Google Scholar]
  25. Miller K. W., Wilson M. W. The pressure reversal of a variety of anesthetic agents in mice. Anesthesiology. 1978 Feb;48(2):104–110. doi: 10.1097/00000542-197802000-00005. [DOI] [PubMed] [Google Scholar]
  26. Moss G. W., Franks N. P., Lieb W. R. Modulation of the general anesthetic sensitivity of a protein: a transition between two forms of firefly luciferase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):134–138. doi: 10.1073/pnas.88.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mountcastle D. B., Biltonen R. L., Halsey M. J. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatidylcholine liposomes. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4906–4910. doi: 10.1073/pnas.75.10.4906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pocock G., Richards C. D. Cellular mechanisms in general anaesthesia. Br J Anaesth. 1991 Jan;66(1):116–128. doi: 10.1093/bja/66.1.116. [DOI] [PubMed] [Google Scholar]
  29. Richards C. D., Martin K., Gregory S., Keightley C. A., Hesketh T. R., Smith G. A., Warren G. B., Metcalfe J. C. Degenerate perturbations of protein structure as the mechanism of anaesthetic action. Nature. 1978 Dec 21;276(5690):775–779. doi: 10.1038/276775a0. [DOI] [PubMed] [Google Scholar]
  30. Roth S. H., Smith R. A., Paton W. D. Pressure antagonism of anaesthetic-induced conduction failure in frog peripheral nerve. Br J Anaesth. 1976 Jul;48(7):621–628. doi: 10.1093/bja/48.7.621. [DOI] [PubMed] [Google Scholar]
  31. Simon S. A., Parmentier J. L., Bennett P. B. Anesthetic antagonism of the effects of high hydrostatic pressure on locomotory activity of the brine shrimp Artemia. Comp Biochem Physiol A Comp Physiol. 1983;75(2):193–199. doi: 10.1016/0300-9629(83)90069-5. [DOI] [PubMed] [Google Scholar]
  32. Smith E. B., Bowser-Riley F., Daniels S., Dunbar I. T., Harrison C. B., Paton W. D. Species variation and the mechanism of pressure-anaesthetic interactions. Nature. 1984 Sep 6;311(5981):56–57. doi: 10.1038/311056a0. [DOI] [PubMed] [Google Scholar]
  33. Strehler B. L., Johnson F. H. THE TEMPERATURE-PRESSURE-INHIBITOR RELATIONS OF BACTERIAL LUMINESCENCE IN VITRO. Proc Natl Acad Sci U S A. 1954 Jul;40(7):606–617. doi: 10.1073/pnas.40.7.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tarasiuk A., Grossman Y., Kendig J. J. Barbiturate alteration of respiratory rhythm and drive in isolated brainstem-spinal cord of newborn rat: studies at normal and hyperbaric pressure. Br J Anaesth. 1991 Jan;66(1):88–96. doi: 10.1093/bja/66.1.88. [DOI] [PubMed] [Google Scholar]
  35. Wann K. T., Macdonald A. G. Actions and interactions of high pressure and general anaesthetics. Prog Neurobiol. 1988;30(4):271–307. doi: 10.1016/0301-0082(88)90025-1. [DOI] [PubMed] [Google Scholar]
  36. Winter P. M., Smith R. A., Smith M., Eger E. I., 3rd Pressure antagonism of barbiturate anesthesia. Anesthesiology. 1976 May;44(5):416–419. doi: 10.1097/00000542-197605000-00010. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES