Abstract
The efficiency of various patterns of pulsatile stimulation is determined in a model in which a receptor becomes desensitized in the presence of its stimulatory ligand. The effect of stochastic or chaotic changes in the duration and/or interval between successive pulses in a series of square-wave stimuli is investigated. Before addressing the effect of random variations in the pulsatile signal, we first extend the results of a previous analysis (Li, Y.X., and A. Goldbeter. 1989. Biophys. J. 55:125-145) by demonstrating the existence of an optimal periodic signal that maximizes target cell responsiveness whatever the magnitude of stimulation. As to the effect of stochastic or chaotic variations in the pulsatile stimulus, three kinds of random distributions are used, namely, a Gaussian and a white-noise distribution, and a chaotic time series generated by the logistic map. All these random distributions are symmetrically centered around the reference value of the duration or interval that characterizes the optimal periodic stimulus yielding maximal responsiveness in target cells. Stochastically or chaotically varying pulses are less effective than the periodic signal that corresponds to the optimal pattern of pulsatile stimulation. The response of the receptor system is most sensitive to changes in the time interval that separates successive stimuli. Similar conclusions hold when stochastic or chaotic signals are compared to a reference periodic stimulus differing from the optimal one, although the effect of random variations is then reduced. The decreased efficiency of stochastic pulses accounts for the observed superiority of periodic versus stochastic pulses of cyclic AMP (cAMP) in Dictyostelium amoebae. The results are also discussed with respect to the efficiency of periodic versus stochastic or chaotic patterns of hormone secretion.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berridge M. J., Cobbold P. H., Cuthbertson K. S. Spatial and temporal aspects of cell signalling. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 26;320(1199):325–343. doi: 10.1098/rstb.1988.0080. [DOI] [PubMed] [Google Scholar]
- Brewitt B., Clark J. I. Growth and transparency in the lens, an epithelial tissue, stimulated by pulses of PDGF. Science. 1988 Nov 4;242(4879):777–779. doi: 10.1126/science.3187521. [DOI] [PubMed] [Google Scholar]
- Gerisch G. Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium. Annu Rev Biochem. 1987;56:853–879. doi: 10.1146/annurev.bi.56.070187.004225. [DOI] [PubMed] [Google Scholar]
- Gero A. Desensitization and coupled receptors: a model of drug dependence. J Theor Biol. 1985 Aug 21;115(4):603–617. doi: 10.1016/s0022-5193(85)80143-0. [DOI] [PubMed] [Google Scholar]
- Goldbeter A., Koshland D. E., Jr Simple molecular model for sensing and adaptation based on receptor modification with application to bacterial chemotaxis. J Mol Biol. 1982 Nov 5;161(3):395–416. doi: 10.1016/0022-2836(82)90246-7. [DOI] [PubMed] [Google Scholar]
- Knobil E. Patterns of hormonal signals and hormone action. N Engl J Med. 1981 Dec 24;305(26):1582–1583. doi: 10.1056/NEJM198112243052611. [DOI] [PubMed] [Google Scholar]
- Knobil E. The neuroendocrine control of the menstrual cycle. Recent Prog Horm Res. 1980;36:53–88. doi: 10.1016/b978-0-12-571136-4.50008-5. [DOI] [PubMed] [Google Scholar]
- Knox B. E., Devreotes P. N., Goldbeter A., Segel L. A. A molecular mechanism for sensory adaptation based on ligand-induced receptor modification. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2345–2349. doi: 10.1073/pnas.83.8.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefèbvre P. J., Paolisso G., Scheen A. J., Henquin J. C. Pulsatility of insulin and glucagon release: physiological significance and pharmacological implications. Diabetologia. 1987 Jul;30(7):443–452. doi: 10.1007/BF00279610. [DOI] [PubMed] [Google Scholar]
- Li Y., Goldbeter A. Frequency encoding of pulsatile signals of cAMP based on receptor desensitization in Dictyostelium cells. J Theor Biol. 1990 Oct 7;146(3):355–367. doi: 10.1016/s0022-5193(05)80746-5. [DOI] [PubMed] [Google Scholar]
- Li Y., Goldbeter A. Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness. Biophys J. 1989 Jan;55(1):125–145. doi: 10.1016/S0006-3495(89)82785-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martiel J. L., Goldbeter A. A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. Biophys J. 1987 Nov;52(5):807–828. doi: 10.1016/S0006-3495(87)83275-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meier K., Klein C. An unusual protein kinase phosphorylates the chemotactic receptor of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2181–2185. doi: 10.1073/pnas.85.7.2181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanjundiah V. Periodic stimuli are more successful than randomly spaced ones for inducing development in Dictyostelium discoideum. Biosci Rep. 1988 Dec;8(6):571–577. doi: 10.1007/BF01117336. [DOI] [PubMed] [Google Scholar]
- Paolisso G., Scheen A. J., Giugliano D., Sgambato S., Albert A., Varricchio M., D'Onofrio F., Lefèbvre P. J. Pulsatile insulin delivery has greater metabolic effects than continuous hormone administration in man: importance of pulse frequency. J Clin Endocrinol Metab. 1991 Mar;72(3):607–615. doi: 10.1210/jcem-72-3-607. [DOI] [PubMed] [Google Scholar]
- Pohl C. R., Richardson D. W., Hutchison J. S., Germak J. A., Knobil E. Hypophysiotropic signal frequency and the functioning of the pituitary-ovarian system in the rhesus monkey. Endocrinology. 1983 Jun;112(6):2076–2080. doi: 10.1210/endo-112-6-2076. [DOI] [PubMed] [Google Scholar]
- Pool R. Is it healthy to be chaotic? Science. 1989 Feb 3;243(4891):604–607. doi: 10.1126/science.2916117. [DOI] [PubMed] [Google Scholar]
- Rapp P. E., Mees A. I., Sparrow C. T. Frequency encoded biochemical regulation is more accurate than amplitude dependent control. J Theor Biol. 1981 Jun 21;90(4):531–544. doi: 10.1016/0022-5193(81)90304-0. [DOI] [PubMed] [Google Scholar]
- Rapp P. E. Why are so many biological systems periodic? Prog Neurobiol. 1987;29(3):261–273. doi: 10.1016/0301-0082(87)90023-2. [DOI] [PubMed] [Google Scholar]
- Segel L. A., Goldbeter A., Devreotes P. N., Knox B. E. A mechanism for exact sensory adaptation based on receptor modification. J Theor Biol. 1986 May 21;120(2):151–179. doi: 10.1016/s0022-5193(86)80171-0. [DOI] [PubMed] [Google Scholar]
- Snaar-Jagalska B. E., Van Haastert P. J. Pertussis toxin inhibits cAMP-induced desensitization of adenylate cyclase in Dictyostelium discoideum. Mol Cell Biochem. 1990 Feb 9;92(2):177–189. doi: 10.1007/BF00218135. [DOI] [PubMed] [Google Scholar]
- Stojilković S. S., Rojas E., Stutzin A., Izumi S., Catt K. J. Desensitization of pituitary gonadotropin secretion by agonist-induced inactivation of voltage-sensitive calcium channels. J Biol Chem. 1989 Jul 5;264(19):10939–10942. [PubMed] [Google Scholar]
- Vaughan R. A., Devreotes P. N. Ligand-induced phosphorylation of the cAMP receptor from Dictyostelium discoideum. J Biol Chem. 1988 Oct 5;263(28):14538–14543. [PubMed] [Google Scholar]
- Wildt L., Häusler A., Marshall G., Hutchison J. S., Plant T. M., Belchetz P. E., Knobil E. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology. 1981 Aug;109(2):376–385. doi: 10.1210/endo-109-2-376. [DOI] [PubMed] [Google Scholar]
