Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1992 Jan;61(1):172–188. doi: 10.1016/S0006-3495(92)81825-8

Two-dimensional crystallization of a bacterial surface protein on lipid vesicles under controlled conditions.

A Paul 1, H Engelhardt 1, U Jakubowski 1, W Baumeister 1
PMCID: PMC1260232  PMID: 1540688

Abstract

The solubilized surface protein of the Gram-negative bacterium Comamonas acidovorans was reconstituted on lipid vesicles by means of controlled dialysis. To this end, a multichamber dialysis apparatus was built which allows one to control the temperature and the dialysis rate, to apply various temperatures or buffer systems and sample conditions in a single experiment, and to monitor the turbidity of the sample by means of light scattering. The reconstitution conditions were optimized such that the surface protein formed two-dimensional crystals suitable for electron crystallography. The recrystallized surface protein arrays gave a resolution of approximately 1.3 nm in projection after correlation averaging of negatively stained preparations. The surface protein assembled into partially self-contained two-dimensional crystals which possess a strong shape-determining effect and formed cylinders and various cone-shaped vesicles. The development of the various vesicle forms is described in a model.

Full text

PDF
172

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumeister W., Karrenberg F., Rachel R., Engel A., ten Heggeler B., Saxton W. O. The major cell envelope protein of Micrococcus radiodurans (R1). Structural and chemical characterization. Eur J Biochem. 1982 Jul;125(3):535–544. doi: 10.1111/j.1432-1033.1982.tb06715.x. [DOI] [PubMed] [Google Scholar]
  2. Baumeister W., Wildhaber I., Phipps B. M. Principles of organization in eubacterial and archaebacterial surface proteins. Can J Microbiol. 1989 Jan;35(1):215–227. doi: 10.1139/m89-034. [DOI] [PubMed] [Google Scholar]
  3. Baumeister W., Wildhaber I., Phipps B. M. Principles of organization in eubacterial and archaebacterial surface proteins. Can J Microbiol. 1989 Jan;35(1):215–227. doi: 10.1139/m89-034. [DOI] [PubMed] [Google Scholar]
  4. Blaurock A. E., Walsby A. E. Crystalline structure of the gas vesicle wall from Anabaena flos-aquae. J Mol Biol. 1976 Aug 5;105(2):183–199. doi: 10.1016/0022-2836(76)90106-6. [DOI] [PubMed] [Google Scholar]
  5. Boekema E. J. The present state of two-dimensional crystallization of membrane proteins. Electron Microsc Rev. 1990;3(1):87–96. doi: 10.1016/0892-0354(90)90015-k. [DOI] [PubMed] [Google Scholar]
  6. Chalcroft J. P., Engelhardt H., Baumeister W. Structure of the porin from a bacterial stalk. FEBS Lett. 1987 Jan 19;211(1):53–58. doi: 10.1016/0014-5793(87)81273-5. [DOI] [PubMed] [Google Scholar]
  7. Chang C. F., Mizushima S., Glaeser R. M. Projected structure of the pore-forming OmpC protein from Escherichia coli outer membrane. Biophys J. 1985 May;47(5):629–639. doi: 10.1016/S0006-3495(85)83959-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cross G. A. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol. 1990;6:1–39. doi: 10.1146/annurev.cb.06.110190.000245. [DOI] [PubMed] [Google Scholar]
  9. Dempsey C. E. The actions of melittin on membranes. Biochim Biophys Acta. 1990 May 7;1031(2):143–161. doi: 10.1016/0304-4157(90)90006-x. [DOI] [PubMed] [Google Scholar]
  10. Easterbrook K. B., Willison J. H., Coombs R. W. Arrangement of morphological subunits in bacterial spinae. Can J Microbiol. 1976 May;22(5):619–629. doi: 10.1139/m76-092. [DOI] [PubMed] [Google Scholar]
  11. Elmes M. L., Scraba D. G., Weiner J. H. Isolation and characterization of the tubular organelles induced by fumarate reductase overproduction in Escherichia coli. J Gen Microbiol. 1986 Jun;132(6):1429–1439. doi: 10.1099/00221287-132-6-1429. [DOI] [PubMed] [Google Scholar]
  12. Engel A., Massalski A., Schindler H., Dorset D. L., Rosenbusch J. P. Porin channel triplets merge into single outlets in Escherichia coli outer membranes. Nature. 1985 Oct 17;317(6038):643–645. doi: 10.1038/317643a0. [DOI] [PubMed] [Google Scholar]
  13. Engelhardt H., Gerbl-Rieger S., Santarius U., Baumeister W. The three-dimensional structure of the regular surface protein of Comamonas acidovorans derived from native outer membranes and reconstituted two-dimensional crystals. Mol Microbiol. 1991 Jul;5(7):1695–1702. doi: 10.1111/j.1365-2958.1991.tb01917.x. [DOI] [PubMed] [Google Scholar]
  14. Ferguson M. A., Williams A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem. 1988;57:285–320. doi: 10.1146/annurev.bi.57.070188.001441. [DOI] [PubMed] [Google Scholar]
  15. Fischetti V. A., Pancholi V., Schneewind O. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol Microbiol. 1990 Sep;4(9):1603–1605. doi: 10.1111/j.1365-2958.1990.tb02072.x. [DOI] [PubMed] [Google Scholar]
  16. Hayes P. K. Gas vesicles: chemical and physical properties. Methods Enzymol. 1988;167:213–222. doi: 10.1016/0076-6879(88)67023-6. [DOI] [PubMed] [Google Scholar]
  17. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  18. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  19. Herbert H., Skriver E., Maunsbach A. B. Three-dimensional structure of renal Na,K-ATPase determined by electron microscopy of membrane crystals. FEBS Lett. 1985 Jul 22;187(1):182–186. doi: 10.1016/0014-5793(85)81238-2. [DOI] [PubMed] [Google Scholar]
  20. Hovmöller S., Slaughter M., Berriman J., Karlsson B., Weiss H., Leonard K. Structural studies of cytochrome reductase. Improved membrane crystals of the enzyme complex and crystallization of a subcomplex. J Mol Biol. 1983 Apr 5;165(2):401–406. doi: 10.1016/s0022-2836(83)80264-2. [DOI] [PubMed] [Google Scholar]
  21. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  22. Jap B. K., Downing K. H., Walian P. J. Structure of PhoE porin in projection at 3.5 A resolution. J Struct Biol. 1990 Mar;103(1):57–63. doi: 10.1016/1047-8477(90)90086-r. [DOI] [PubMed] [Google Scholar]
  23. Kessel M., Radermacher M., Frank J. The structure of the stalk surface layer of a brine pond microorganism: correlation averaging applied to a double layered lattice structure. J Microsc. 1985 Jul;139(Pt 1):63–74. doi: 10.1111/j.1365-2818.1985.tb04662.x. [DOI] [PubMed] [Google Scholar]
  24. Kühlbrandt W., Wang D. N. Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature. 1991 Mar 14;350(6314):130–134. doi: 10.1038/350130a0. [DOI] [PubMed] [Google Scholar]
  25. Lipowsky R. The conformation of membranes. Nature. 1991 Feb 7;349(6309):475–481. doi: 10.1038/349475a0. [DOI] [PubMed] [Google Scholar]
  26. Lyon M. K., Unwin P. N. Two-dimensional structure of the light-harvesting chlorophyll a/b complex by cryoelectron microscopy. J Cell Biol. 1988 May;106(5):1515–1523. doi: 10.1083/jcb.106.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mannella C. A. Phospholipase-induced crystallization of channels in mitochondrial outer membranes. Science. 1984 Apr 13;224(4645):165–166. doi: 10.1126/science.6322311. [DOI] [PubMed] [Google Scholar]
  28. Mannella C. A. Structure of the mitochondrial outer membrane channel derived from electron microscopy of 2D crystals. J Bioenerg Biomembr. 1989 Aug;21(4):427–437. doi: 10.1007/BF00762515. [DOI] [PubMed] [Google Scholar]
  29. Messner P., Pum D., Sleytr U. B. Characterization of the ultrastructure and the self-assembly of the surface layer of Bacillus stearothermophilus strain NRS 2004/3a. J Ultrastruct Mol Struct Res. 1986 Oct-Dec;97(1-3):73–88. doi: 10.1016/s0889-1605(86)80008-8. [DOI] [PubMed] [Google Scholar]
  30. Messner P., Pum D., Sára M., Stetter K. O., Sleytr U. B. Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol. 1986 Jun;166(3):1046–1054. doi: 10.1128/jb.166.3.1046-1054.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miller K. R., Jacob J. S. Two-dimensional crystals formed from photosynthetic reaction centers. J Cell Biol. 1983 Oct;97(4):1266–1270. doi: 10.1083/jcb.97.4.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Milsmann M. H., Schwendener R. A., Weder H. G. The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochim Biophys Acta. 1978 Sep 11;512(1):147–155. doi: 10.1016/0005-2736(78)90225-0. [DOI] [PubMed] [Google Scholar]
  33. Phipps B. M., Huber R., Baumeister W. The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrphum consists of two regularly arrayed protein layers: three-dimensional structure of the outer layer. Mol Microbiol. 1991 Feb;5(2):253–265. doi: 10.1111/j.1365-2958.1991.tb02106.x. [DOI] [PubMed] [Google Scholar]
  34. Rabon E. C., Reuben M. A. The mechanism and structure of the gastric H,K-ATPase. Annu Rev Physiol. 1990;52:321–344. doi: 10.1146/annurev.ph.52.030190.001541. [DOI] [PubMed] [Google Scholar]
  35. Rhoden V., Goldin S. M. Formation of unilamellar lipid vesicles of controllable dimensions by detergent dialysis. Biochemistry. 1979 Sep 18;18(19):4173–4176. doi: 10.1021/bi00586a020. [DOI] [PubMed] [Google Scholar]
  36. Rosenbusch J. P. The critical role of detergents in the crystallization of membrane proteins. J Struct Biol. 1990 Jul-Sep;104(1-3):134–138. doi: 10.1016/1047-8477(90)90068-n. [DOI] [PubMed] [Google Scholar]
  37. Sass H. J., Büldt G., Beckmann E., Zemlin F., van Heel M., Zeitler E., Rosenbusch J. P., Dorset D. L., Massalski A. Densely packed beta-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy. J Mol Biol. 1989 Sep 5;209(1):171–175. doi: 10.1016/0022-2836(89)90180-0. [DOI] [PubMed] [Google Scholar]
  38. Saxton W. O., Baumeister W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc. 1982 Aug;127(Pt 2):127–138. doi: 10.1111/j.1365-2818.1982.tb00405.x. [DOI] [PubMed] [Google Scholar]
  39. Schmidt M. F. Fatty acid binding: a new kind of posttranslational modification of membrane proteins. Curr Top Microbiol Immunol. 1983;102:101–129. doi: 10.1007/978-3-642-68906-2_3. [DOI] [PubMed] [Google Scholar]
  40. Sefton B. M., Buss J. E. The covalent modification of eukaryotic proteins with lipid. J Cell Biol. 1987 Jun;104(6):1449–1453. doi: 10.1083/jcb.104.6.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seki S., Hayashi H., Oda T. Studies on cytochrome oxidase. I. Fine structure of cytochrome oxidase-rich submitochondrial membrane. Arch Biochem Biophys. 1970 May;138(1):110–121. doi: 10.1016/0003-9861(70)90290-0. [DOI] [PubMed] [Google Scholar]
  42. Singer S. J. The structure and insertion of integral proteins in membranes. Annu Rev Cell Biol. 1990;6:247–296. doi: 10.1146/annurev.cb.06.110190.001335. [DOI] [PubMed] [Google Scholar]
  43. Skriver E., Maunsbach A. B., Jørgensen P. L. Formation of two-dimensional crystals in pure membrane-bound Na+,K+-ATPase. FEBS Lett. 1981 Aug 31;131(2):219–222. doi: 10.1016/0014-5793(81)80371-7. [DOI] [PubMed] [Google Scholar]
  44. Sleytr U. B., Messner P. Crystalline surface layers on bacteria. Annu Rev Microbiol. 1983;37:311–339. doi: 10.1146/annurev.mi.37.100183.001523. [DOI] [PubMed] [Google Scholar]
  45. Smit J., Grano D. A., Glaeser R. M., Agabian N. Periodic surface array in Caulobacter crescentus: fine structure and chemical analysis. J Bacteriol. 1981 Jun;146(3):1135–1150. doi: 10.1128/jb.146.3.1135-1150.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  47. Stankovic C. J., Heinemann S. H., Delfino J. M., Sigworth F. J., Schreiber S. L. Transmembrane channels based on tartaric acid-gramicidin A hybrids. Science. 1989 May 19;244(4906):813–817. doi: 10.1126/science.2471263. [DOI] [PubMed] [Google Scholar]
  48. Stewart M., Beveridge T. J., Sprott G. D. Crystalline order to high resolution in the sheath of Methanospirillum hungatei: a cross-beta structure. J Mol Biol. 1985 Jun 5;183(3):509–515. doi: 10.1016/0022-2836(85)90019-1. [DOI] [PubMed] [Google Scholar]
  49. Taylor K. A., Dux L., Martonosi A. Three-dimensional reconstruction of negatively stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum. J Mol Biol. 1986 Feb 5;187(3):417–427. doi: 10.1016/0022-2836(86)90442-0. [DOI] [PubMed] [Google Scholar]
  50. Unwin N., Toyoshima C., Kubalek E. Arrangement of the acetylcholine receptor subunits in the resting and desensitized states, determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes. J Cell Biol. 1988 Sep;107(3):1123–1138. doi: 10.1083/jcb.107.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
  52. Wildhaber I., Baumeister W. The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J. 1987 May;6(5):1475–1480. doi: 10.1002/j.1460-2075.1987.tb02389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wingfield P., Arad T., Leonard K., Weiss H. Membrane crystals of ubiquinone:cytochrome c reductase from Neurospora mitochondria. Nature. 1979 Aug 23;280(5724):696–697. doi: 10.1038/280696a0. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES