Abstract
A theoretical analysis was undertaken of a Rall motoneuron under voltage clamp with a finite access resistance. This model is relevant to the conditions of the whole-cell patch clamp, which to date has been used very little for cable analysis. It was shown that the soma and cable charging currents can be distinguished, and that the soma is charged with a time constant approximately equal to the access resistance times the somatic capacitance. Thus, the charging time of the soma is similar to what it would be if the cell had no process. Simple formulas were derived that can be used to calculate the electrotonic length, the membrane time constant, and the soma-dendrite resistance ratio of a cell with a cylindrical process. With the aid of these formulas, reasonable estimates of parameter values were recovered from simulated transient currents. Tests of the Rall model were proposed to determine when there is an equivalent cylinder that is consistent with observed charging behavior. The analysis was extended to a cable with an open end and to a model in which the soma and dendrite have different membrane time constants. It was shown that with voltage-clamp data estimates of electrical parameters other than rho are relatively insensitive to differences between the membrane properties of the soma and dendrite. The methods of cable analysis introduced here were illustrated by application to charging transients recorded from a hippocampal pyramidal cell and from a neurohypophysial nerve ending. The Rall model provided a good description of the pyramidal cell current transient but was inconsistent with the charging behavior observed for the nerve ending. With the recent technical advance of patch clamp recording in brain slices, the analysis presented here should help neurophysiologists investigate cable properties in a wide variety of systems.
Full text
PDF![756](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/a7003c5d8a1b/biophysj00104-0167.png)
![757](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/533344b2e8be/biophysj00104-0168.png)
![758](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/ba31e1da19fc/biophysj00104-0169.png)
![759](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/059b707c0544/biophysj00104-0170.png)
![760](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/afb1a5aaf47d/biophysj00104-0171.png)
![761](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/0133568927a7/biophysj00104-0172.png)
![762](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/976ed986f263/biophysj00104-0173.png)
![763](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/dd045e0d5c2e/biophysj00104-0174.png)
![764](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/9b27b96bfc56/biophysj00104-0175.png)
![765](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/988658146a4a/biophysj00104-0176.png)
![766](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87d1/1260293/83338701a032/biophysj00104-0177.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blanton M. G., Lo Turco J. J., Kriegstein A. R. Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods. 1989 Dec;30(3):203–210. doi: 10.1016/0165-0270(89)90131-3. [DOI] [PubMed] [Google Scholar]
- Brown T. H., Fricke R. A., Perkel D. H. Passive electrical constants in three classes of hippocampal neurons. J Neurophysiol. 1981 Oct;46(4):812–827. doi: 10.1152/jn.1981.46.4.812. [DOI] [PubMed] [Google Scholar]
- Coleman P. A., Miller R. F. Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. J Neurophysiol. 1989 Jan;61(1):218–230. doi: 10.1152/jn.1989.61.1.218. [DOI] [PubMed] [Google Scholar]
- Durand D. The somatic shunt cable model for neurons. Biophys J. 1984 Nov;46(5):645–653. doi: 10.1016/S0006-3495(84)84063-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards F. A., Konnerth A., Sakmann B., Takahashi T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 1989 Sep;414(5):600–612. doi: 10.1007/BF00580998. [DOI] [PubMed] [Google Scholar]
- Jack J. J., Redman S. J. An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J Physiol. 1971 Jun;215(2):321–352. doi: 10.1113/jphysiol.1971.sp009473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B., Konnerth A., Augustine G. J. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):380–384. doi: 10.1073/pnas.88.2.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawato M. Cable properties of a neuron model with non-uniform membrane resistivity. J Theor Biol. 1984 Nov 7;111(1):149–169. doi: 10.1016/s0022-5193(84)80202-7. [DOI] [PubMed] [Google Scholar]
- Llano I., Marty A., Armstrong C. M., Konnerth A. Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol. 1991 Mar;434:183–213. doi: 10.1113/jphysiol.1991.sp018465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordmann J. J. Ultrastructural morphometry of the rat neurohypophysis. J Anat. 1977 Feb;123(Pt 1):213–218. [PMC free article] [PubMed] [Google Scholar]
- Pongracz F., Firestein S., Shepherd G. M. Electrotonic structure of olfactory sensory neurons analyzed by intracellular and whole cell patch techniques. J Neurophysiol. 1991 Mar;65(3):747–758. doi: 10.1152/jn.1991.65.3.747. [DOI] [PubMed] [Google Scholar]
- RALL W. Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol. 1959 Nov;1:491–527. doi: 10.1016/0014-4886(59)90046-9. [DOI] [PubMed] [Google Scholar]
- Rall W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys J. 1969 Dec;9(12):1483–1508. doi: 10.1016/S0006-3495(69)86467-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stafstrom C. E., Schwindt P. C., Crill W. E. Cable properties of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol. 1984 Aug;52(2):278–289. doi: 10.1152/jn.1984.52.2.278. [DOI] [PubMed] [Google Scholar]
- Turner D. A., Schwartzkroin P. A. Steady-state electrotonic analysis of intracellularly stained hippocampal neurons. J Neurophysiol. 1980 Jul;44(1):184–199. doi: 10.1152/jn.1980.44.1.184. [DOI] [PubMed] [Google Scholar]