Abstract
This study describes the distribution patterns of neurons in the rat SCG that project to a number of spatially separated and functionally different target tissues. Fluorescent dyes were used to label retrogradely neurons that project to the pineal gland, iris, nictitating membrane, Müller's smooth muscle of the eyelid, submaxillary gland, thyroid gland, tongue, buccal mucosa, and skin in several areas of head and neck. The numbers of neurons in the various subpopulations were quantified and, in several instances, postganglionic nerve transection was used to correlate the topography of subpopulations with the exit site/s of their projections from the ganglion. Individual neurons were found to have very limited projection fields and contralateral innervation of bilateral targets appeared to be minimal. Neurons with specific functions or projection fields were not highly localised within the SCG, but there was a general rostrocaudal organisation of neurons with respect to the position of their targets along the rostrocaudal axis of the body and this was correlated with the exist sites of the neurons from the ganglion.
Full text
PDF











Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm P., Ekström J. On the adrenergic innervation of the rat parotid gland. Experientia. 1977 Apr 15;33(4):523–524. doi: 10.1007/BF01922251. [DOI] [PubMed] [Google Scholar]
- Arbab M. A., Wiklund L., Svendgaard N. A. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience. 1986 Nov;19(3):695–708. doi: 10.1016/0306-4522(86)90293-9. [DOI] [PubMed] [Google Scholar]
- Arvidson B. Retrograde transport of horseradish peroxidase in sensory and adrenergic neurons following injection into the anterior eye chamber. J Neurocytol. 1979 Dec;8(6):751–764. doi: 10.1007/BF01206674. [DOI] [PubMed] [Google Scholar]
- Bowers C. W., Dahm L. M., Zigmond R. E. The number and distribution of sympathetic neurons that innervate the rat pineal gland. Neuroscience. 1984 Sep;13(1):87–96. doi: 10.1016/0306-4522(84)90261-6. [DOI] [PubMed] [Google Scholar]
- Chibuzo G. A., Cummings J. F., Evans H. E. Autonomic innervation of the tongue: a horseradish peroxidase study in the dog. J Auton Nerv Syst. 1980 Jul;2(2):117–129. doi: 10.1016/0165-1838(80)90040-5. [DOI] [PubMed] [Google Scholar]
- Ellison J. P., Clark M. G. Retrograde axonal transport of horseradish peroxidase in peripheral autonomic nerves. J Comp Neurol. 1975 May 1;161(1):103–113. doi: 10.1002/cne.901610108. [DOI] [PubMed] [Google Scholar]
- Flett D. L., Bell C. The impact of sexual dimorphism on neuron numbers in the superior cervical ganglion of the rat. J Auton Nerv Syst. 1990 Apr;30(1):23–28. doi: 10.1016/0165-1838(90)90160-k. [DOI] [PubMed] [Google Scholar]
- Gibbins I. L., Morris J. L. Sympathetic noradrenergic neurons containing dynorphin but not neuropeptide Y innervate small cutaneous blood vessels of guinea-pigs. J Auton Nerv Syst. 1990 Feb;29(2):137–149. doi: 10.1016/0165-1838(90)90179-m. [DOI] [PubMed] [Google Scholar]
- Hendry I. A., Hill C. E., Watters D. J. Long-term retention of Fast Blue in sympathetic neurones after axotomy and regeneration--demonstration of incorrect reconnections. Brain Res. 1986 Jun 25;376(2):292–298. doi: 10.1016/0006-8993(86)90192-7. [DOI] [PubMed] [Google Scholar]
- Kobayashi S., Tsukahara S., Sugita K., Nagata T. Adrenergic and cholinergic innervation of rat cerebral arteries. Consecutive demonstration on whole mount preparations. Histochemistry. 1981;70(2):129–138. doi: 10.1007/BF00493205. [DOI] [PubMed] [Google Scholar]
- Lichtman J. W., Purves D., Yip J. W. On the purpose of selective innervation of guinea-pig superior cervical ganglion cells. J Physiol. 1979 Jul;292:69–84. doi: 10.1113/jphysiol.1979.sp012839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lundberg J. M., Hökfelt T. Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurons--functional and pharmacological implications. Prog Brain Res. 1986;68:241–262. doi: 10.1016/s0079-6123(08)60242-3. [DOI] [PubMed] [Google Scholar]
- Proceedings of the Physiological Society, 1893. No. I. J Physiol. 1893 Mar;14(2-3):i–iv. doi: 10.1113/jphysiol.1893.sp000450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss S., Moore R. Y. Neuropeptide Y-containing neurons in the rat superior cervical ganglion: projections to the pineal gland. J Pineal Res. 1989;6(4):307–316. doi: 10.1111/j.1600-079x.1989.tb00426.x. [DOI] [PubMed] [Google Scholar]
- Romeo H. E., González Solveyra C., Vacas M. I., Rosenstein R. E., Barontini M., Cardinali D. P. Origins of the sympathetic projections to rat thyroid and parathyroid glands. J Auton Nerv Syst. 1986 Sep;17(1):63–70. doi: 10.1016/0165-1838(86)90044-5. [DOI] [PubMed] [Google Scholar]
- Smith P. G., Bruckert J. W., Mills E. Reinnervation of Müller's smooth muscle by atypical sympathetic pathways following neonatal ganglionectomy in the rat: structural and functional investigations of enhanced neuroplasticity. Neuroscience. 1987 Nov;23(2):781–793. doi: 10.1016/0306-4522(87)90095-9. [DOI] [PubMed] [Google Scholar]
- Uddman R., Hara H., Edvinsson L. Neuronal pathways to the rat middle meningeal artery revealed by retrograde tracing and immunocytochemistry. J Auton Nerv Syst. 1989 Feb;26(1):69–75. doi: 10.1016/0165-1838(89)90109-4. [DOI] [PubMed] [Google Scholar]
- Vidovic M., Hill C. E., Hendry I. A. Developmental time course of the sympathetic postganglionic innervation of the rat eye. Brain Res. 1987 Mar;429(1):133–138. doi: 10.1016/0165-3806(87)90146-5. [DOI] [PubMed] [Google Scholar]


