Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1992 Jun;61(6):1462–1469. doi: 10.1016/S0006-3495(92)81952-5

Enhancement of carotenoid-to-chlorophyll singlet energy transfer by carotenoid-carotenoid interaction.

J Zurdo 1, C Fernández-Cabrera 1, J M Ramírez 1
PMCID: PMC1260442  PMID: 1617133

Abstract

The apparent quantum yield of singlet-singlet spirilloxanthin-to-bacteriochlorophyll a energy transfer increases linearly with the residual spirilloxanthin content in Rhodospirillum rubrum membrane vesicles from which this carotenoid has been partially removed. Since it has been previously shown that carotenoid-carotenoid interaction is a linear function of the residual spirilloxanthin level in the major pigment-protein complex of those vesicles (Zurdo, J., R. M. Lozano, C. Fernandez-Cabrera, and J. M. Ramirez. 1991. Biochem. J. 274:881-884), it appears that such degenerate interaction enhances singlet energy transfer. Part of the enhancement may be explained if the energy donor is the spirilloxanthin 1Bu----1Ag (S2----S0) transition, because exciton coupling probably brings its energy closer to that of the Qx (S2----S0) transition of bacteriochlorophyll. In contrast, it seems that the possible stabilization of the spirilloxanthin 2Ag (S1) state would hardly improve energy transfer, because this hidden state probably lies below the S1 bacteriochlorophyll state. In any case, the stabilizing effects of carotenoid-carotenoid interactions seem insufficient to explain the enhancement of energy transfer. Direct or indirect effects of carotenoid dimerization on the three-dimensional structure of the pigment cluster appear to be required to account for such enhancement.

Full text

PDF
1462

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aagaard J., Sistrom W. R. Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol. 1972 Feb;15(2):209–225. doi: 10.1111/j.1751-1097.1972.tb06240.x. [DOI] [PubMed] [Google Scholar]
  2. Britton G. General carotenoid methods. Methods Enzymol. 1985;111:113–149. doi: 10.1016/s0076-6879(85)11007-4. [DOI] [PubMed] [Google Scholar]
  3. Cogdell R. J., Frank H. A. How carotenoids function in photosynthetic bacteria. Biochim Biophys Acta. 1987;895(2):63–79. doi: 10.1016/s0304-4173(87)80008-3. [DOI] [PubMed] [Google Scholar]
  4. Davidson E., Cogdell R. J. Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas as sphaeroides R26. Biochim Biophys Acta. 1981 Apr 13;635(2):295–303. doi: 10.1016/0005-2728(81)90028-1. [DOI] [PubMed] [Google Scholar]
  5. GOEDHEER J. C. Energy transfer between carotenoids and bacteriochlorophyll in chromatophores of purple bacteria. Biochim Biophys Acta. 1959 Sep;35:1–8. doi: 10.1016/0006-3002(59)90328-2. [DOI] [PubMed] [Google Scholar]
  6. Godik V. I., Borisov A. Y. Excitation trapping by different states of photosynthetic reaction centres. FEBS Lett. 1977 Oct 15;82(2):355–358. doi: 10.1016/0014-5793(77)80620-0. [DOI] [PubMed] [Google Scholar]
  7. KASHA M. ENERGY TRANSFER MECHANISMS AND THE MOLECULAR EXCITON MODEL FOR MOLECULAR AGGREGATES. Radiat Res. 1963 Sep;20:55–70. [PubMed] [Google Scholar]
  8. Lozano R. M., Fernández-Cabrera C., Ramírez J. M. The contribution of the carotenoid to the visible circular dichroism of the light-harvesting antenna of Rhodospirillum rubrum. Biochem J. 1990 Sep 1;270(2):469–472. doi: 10.1042/bj2700469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Scolnik P. A., Zannoni D., Marrs B. L. Spectral and functional comparisons between the carotenoids of the two antenna complexes of Rhodopseudomonas capsulata. Biochim Biophys Acta. 1980 Dec 3;593(2):230–240. doi: 10.1016/0005-2728(80)90061-4. [DOI] [PubMed] [Google Scholar]
  10. Shreve A. P., Trautman J. K., Frank H. A., Owens T. G., Albrecht A. C. Femtosecond energy-transfer processes in the B800-850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta. 1991 Jun 17;1058(2):280–288. doi: 10.1016/s0005-2728(05)80248-8. [DOI] [PubMed] [Google Scholar]
  11. Trautman J. K., Shreve A. P., Violette C. A., Frank H. A., Owens T. G., Albrecht A. C. Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990 Jan;87(1):215–219. doi: 10.1073/pnas.87.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Zurdo J., Lozano R. M., Fernandez-Cabrera C., Ramirez J. M. Dimeric carotenoid interaction in the light-harvesting antenna of purple phototrophic bacteria. Biochem J. 1991 Mar 15;274(Pt 3):881–884. doi: 10.1042/bj2740881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES