Abstract
We are studying structure-function relationships in the Diphtheria Toxin (DT) channel using a combination of site-directed mutagenesis and electrophysiology in artificial lipid bilayers. We made site-directed mutations of charged residues in the toxin's channel-forming B fragment, and after expressing the mutant proteins in Escherichia coli, we analyzed the single channels they formed in lipid bilayers. Changing aspartate 352, which is located in a short hydrophilic loop separating two hydrophobic stretches, to asparagine or lysine dramatically reduces the single-channel conductance of the pore at pH 5.3 cis, 7.2 trans (5.3/7.2). Lowering the pH on both sides of the membrane essentially eliminates the difference between wild-type and D352N; this finding is consistent with the idea that an aspartate with a (protonated) neutral side-chain and the always neutral asparagine have similar electrostatic influences on permeant ions. Using a high concentration of permeant buffer to clamp the pH of the cis compartment and the pore, and varying the pH on the trans side, we have located D352 at or near the trans compartment. We further find that D352N channels, in contrast to wild-type, display conductances independent of trans pH. This observation allows us to determine the titration curve of aspartate 352 in the wild-type toxin, establishing its pKa at approximately 5.5.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Deleers M., Beugnier N., Falmagne P., Cabiaux V., Ruysschaert J. M. Localization in diphtheria toxin fragment B of a region that induces pore formation in planar lipid bilayers at low pH. FEBS Lett. 1983 Aug 22;160(1-2):82–86. doi: 10.1016/0014-5793(83)80941-7. [DOI] [PubMed] [Google Scholar]
- Donovan J. J., Simon M. I., Draper R. K., Montal M. Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proc Natl Acad Sci U S A. 1981 Jan;78(1):172–176. doi: 10.1073/pnas.78.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoch D. H., Romero-Mira M., Ehrlich B. E., Finkelstein A., DasGupta B. R., Simpson L. L. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1692–1696. doi: 10.1073/pnas.82.6.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kagan B. L., Finkelstein A., Colombini M. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4950–4954. doi: 10.1073/pnas.78.8.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]