Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1992 Apr;62(1):209–219. doi: 10.1016/S0006-3495(92)81806-4

Structure and dynamics of Escherichia coli chemosensory receptors. Engineered sulfhydryl studies.

C L Careaga 1, J J Falke 1
PMCID: PMC1260519  PMID: 1318100

Abstract

Cysteine residues introduced by site-directed mutagenesis have been used to probe the conformation and dynamics of two receptors in the E. coli chemotaxis pathway. (a) Thermal motions of the polypeptide backbone were investigated in the periplasmic D-galactose and D-glucose receptor, a globular protein of known structure. Disulfide bond formation between pairs of engineered sulfhydryls were used to trap collisions during the relative motions of surface alpha-helices I and X. Motions with amplitudes ranging from 4.5 to 15.2 A were detected on timescales ranging from 10(-4) to 10(-1) s, respectively. These results suggest that thermal backbone motions may have larger amplitudes than previously thought. (b) Conformational features of the transmembrane aspartate transducer have been investigated. Engineered sulfhydryls were used to ascertain the location and orientations of two putative transmembrane alpha-helices in the primary structure, to investigate the packing of these helices, to determine the oligomer and surface structures, and to detect thermal and ligand-induced dynamics of the polypeptide backbone. A model for the folded conformation of the transducer oligomer is reviewed.

Full text

PDF
209

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balaji V. N., Mobasser A., Rao S. N. Modification of protein stability by introduction of disulfide bridges and prolines: geometric criteria for mutation sites. Biochem Biophys Res Commun. 1989 Apr 14;160(1):109–114. doi: 10.1016/0006-291x(89)91627-6. [DOI] [PubMed] [Google Scholar]
  2. Bowie J. U., Reidhaar-Olson J. F., Lim W. A., Sauer R. T. Deciphering the message in protein sequences: tolerance to amino acid substitutions. Science. 1990 Mar 16;247(4948):1306–1310. doi: 10.1126/science.2315699. [DOI] [PubMed] [Google Scholar]
  3. Burchell B. Turning on and turning off the sense of smell. Nature. 1991 Mar 7;350(6313):16–17. doi: 10.1038/350016a0. [DOI] [PubMed] [Google Scholar]
  4. Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
  5. Falke J. J., Dernburg A. F., Sternberg D. A., Zalkin N., Milligan D. L., Koshland D. E., Jr Structure of a bacterial sensory receptor. A site-directed sulfhydryl study. J Biol Chem. 1988 Oct 15;263(29):14850–14858. [PubMed] [Google Scholar]
  6. Falke J. J., Koshland D. E., Jr Global flexibility in a sensory receptor: a site-directed cross-linking approach. Science. 1987 Sep 25;237(4822):1596–1600. doi: 10.1126/science.2820061. [DOI] [PubMed] [Google Scholar]
  7. Hazelbauer G. L., Adler J. Role of the galactose binding protein in chemotaxis of Escherichia coli toward galactose. Nat New Biol. 1971 Mar 24;230(12):101–104. doi: 10.1038/newbio230101a0. [DOI] [PubMed] [Google Scholar]
  8. Horovitz A., Serrano L., Avron B., Bycroft M., Fersht A. R. Strength and co-operativity of contributions of surface salt bridges to protein stability. J Mol Biol. 1990 Dec 20;216(4):1031–1044. doi: 10.1016/S0022-2836(99)80018-7. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  10. Lyons A., King D. J., Owens R. J., Yarranton G. T., Millican A., Whittle N. R., Adair J. R. Site-specific attachment to recombinant antibodies via introduced surface cysteine residues. Protein Eng. 1990 Aug;3(8):703–708. doi: 10.1093/protein/3.8.703. [DOI] [PubMed] [Google Scholar]
  11. Matsumura M., Matthews B. W. Control of enzyme activity by an engineered disulfide bond. Science. 1989 Feb 10;243(4892):792–794. doi: 10.1126/science.2916125. [DOI] [PubMed] [Google Scholar]
  12. Milburn M. V., Privé G. G., Milligan D. L., Scott W. G., Yeh J., Jancarik J., Koshland D. E., Jr, Kim S. H. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science. 1991 Nov 29;254(5036):1342–1347. doi: 10.1126/science.1660187. [DOI] [PubMed] [Google Scholar]
  13. Milligan D. L., Koshland D. E., Jr Site-directed cross-linking. Establishing the dimeric structure of the aspartate receptor of bacterial chemotaxis. J Biol Chem. 1988 May 5;263(13):6268–6275. [PubMed] [Google Scholar]
  14. Moe G. R., Bollag G. E., Koshland D. E., Jr Transmembrane signaling by a chimera of the Escherichia coli aspartate receptor and the human insulin receptor. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5683–5687. doi: 10.1073/pnas.86.15.5683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mowbray S. L., Foster D. L., Koshland D. E., Jr Proteolytic fragments identified with domains of the aspartate chemoreceptor. J Biol Chem. 1985 Sep 25;260(21):11711–11718. [PubMed] [Google Scholar]
  16. Planas A., Kirsch J. F. Reengineering the catalytic lysine of aspartate aminotransferase by chemical elaboration of a genetically introduced cysteine. Biochemistry. 1991 Aug 20;30(33):8268–8276. doi: 10.1021/bi00247a023. [DOI] [PubMed] [Google Scholar]
  17. Planas A., Kirsch J. F. Sequential protection-modification method for selective sulfhydryl group derivatization in proteins having more than one cysteine. Protein Eng. 1990 Jul;3(7):625–628. doi: 10.1093/protein/3.7.625. [DOI] [PubMed] [Google Scholar]
  18. Post C. B., Dobson C. M., Karplus M. A molecular dynamics analysis of protein structural elements. Proteins. 1989;5(4):337–354. doi: 10.1002/prot.340050409. [DOI] [PubMed] [Google Scholar]
  19. Prakash V., Timasheff S. N. Criteria for distinguishing self-associations in velocity sedimentation. Methods Enzymol. 1986;130:3–6. doi: 10.1016/0076-6879(86)30003-x. [DOI] [PubMed] [Google Scholar]
  20. Quiocho F. A. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):341–352. doi: 10.1098/rstb.1990.0016. [DOI] [PubMed] [Google Scholar]
  21. Rojewska D., Elber R. Molecular dynamics study of secondary structure motions in proteins: application to myohemerythrin. Proteins. 1990;7(3):265–279. doi: 10.1002/prot.340070308. [DOI] [PubMed] [Google Scholar]
  22. Russo A. F., Koshland D. E., Jr Separation of signal transduction and adaptation functions of the aspartate receptor in bacterial sensing. Science. 1983 Jun 3;220(4601):1016–1020. doi: 10.1126/science.6302843. [DOI] [PubMed] [Google Scholar]
  23. Srinivasan N., Sowdhamini R., Ramakrishnan C., Balaram P. Conformations of disulfide bridges in proteins. Int J Pept Protein Res. 1990 Aug;36(2):147–155. doi: 10.1111/j.1399-3011.1990.tb00958.x. [DOI] [PubMed] [Google Scholar]
  24. Stock J. B., Lukat G. S., Stock A. M. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Biophys Chem. 1991;20:109–136. doi: 10.1146/annurev.bb.20.060191.000545. [DOI] [PubMed] [Google Scholar]
  25. Sun D. P., Alber T., Bell J. A., Weaver L. H., Matthews B. W. Use of site-directed mutagenesis to obtain isomorphous heavy-atom derivatives for protein crystallography: cysteine-containing mutants of phage T4 lysozyme. Protein Eng. 1987 Feb-Mar;1(2):115–123. doi: 10.1093/protein/1.2.115. [DOI] [PubMed] [Google Scholar]
  26. Todd A. P., Cong J., Levinthal F., Levinthal C., Hubbell W. L. Site-directed mutagenesis of colicin E1 provides specific attachment sites for spin labels whose spectra are sensitive to local conformation. Proteins. 1989;6(3):294–305. doi: 10.1002/prot.340060312. [DOI] [PubMed] [Google Scholar]
  27. Villafranca J. E., Howell E. E., Voet D. H., Strobel M. S., Ogden R. C., Abelson J. N., Kraut J. Directed mutagenesis of dihydrofolate reductase. Science. 1983 Nov 18;222(4625):782–788. doi: 10.1126/science.6356360. [DOI] [PubMed] [Google Scholar]
  28. Vyas N. K., Vyas M. N., Quiocho F. A. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature. 1987 Jun 18;327(6123):635–638. doi: 10.1038/327635a0. [DOI] [PubMed] [Google Scholar]
  29. van Iwaarden P. R., Pastore J. C., Konings W. N., Kaback H. R. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry. 1991 Oct 8;30(40):9595–9600. doi: 10.1021/bi00104a005. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES