Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1987 Apr;151:169–188.

Further characterisation of the extracellular matrix in the mandibular condyle in neonatal mice.

M Silbermann 1, A H Reddi 1, A R Hand 1, R D Leapman 1, K Von der Mark 1, A Franzen 1
PMCID: PMC1261710  PMID: 3308801

Abstract

This study provides newer information concerning the extracellular matrix of neonatal condylar cartilage--a genuine representative of a secondary type of cartilage. In addition, the data presented hereby indicate that the condylar cartilage contains a population of progenitor cells that synthesise Type I collagen rather than Type II. Under normal conditions in vivo local biomechanical factors influence the progenitor cells to differentiate into cartilage cells and thereby to shift their synthetic pathway from Type I collagen to Type II collagen--the typical collagen of cartilage extracellular matrix. In the absence of such biomechanical effects the condylar progenitor cells seem to proceed with their inherent differentiation pathway and express an osteogenic phenotype (Fig. 21).

Full text

PDF
169

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arsenault A. L., Ottensmeyer F. P. Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1322–1326. doi: 10.1073/pnas.80.5.1322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Copray J. C., Jansen H. W., Duterloo H. S. Effect of compressive forces on phosphatase activity in mandibular condylar cartilage of the rat in vitro. J Anat. 1985 May;140(Pt 3):479–489. [PMC free article] [PubMed] [Google Scholar]
  4. Egerton R. F. Formulae for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy. 1978;3(2):243–251. doi: 10.1016/s0304-3991(78)80031-x. [DOI] [PubMed] [Google Scholar]
  5. Franzén A., Heinegård D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J. 1985 Dec 15;232(3):715–724. doi: 10.1042/bj2320715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gussen R. Articular and internal remodeling in the human otic capsule. Am J Anat. 1968 Mar;122(2):397–417. doi: 10.1002/aja.1001220214. [DOI] [PubMed] [Google Scholar]
  7. Heinegård D., Björne-Persson A., Cöster L., Franzén A., Gardell S., Malmström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J. 1985 Aug 15;230(1):181–194. doi: 10.1042/bj2300181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kühl U., Timpl R., von der Mark K. Synthesis of type IV collagen and laminin in cultures of skeletal muscle cells and their assembly on the surface of myotubes. Dev Biol. 1982 Oct;93(2):344–354. doi: 10.1016/0012-1606(82)90122-1. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Majeska R. J., Nair B. C., Rodan G. A. Glucocorticoid regulation of alkaline phosphatase in the osteoblastic osteosarcoma cell line ROS 17/2.8. Endocrinology. 1985 Jan;116(1):170–179. doi: 10.1210/endo-116-1-170. [DOI] [PubMed] [Google Scholar]
  11. Nilsen R., Magnusson B. C. Enzyme histochemical studies of induced heterotopic cartilage and bone formation in guinea pigs with special reference to acid phosphatase. Scand J Dent Res. 1981 Dec;89(6):491–498. doi: 10.1111/j.1600-0722.1981.tb01713.x. [DOI] [PubMed] [Google Scholar]
  12. Noden D. M. An analysis of migratory behavior of avian cephalic neural crest cells. Dev Biol. 1975 Jan;42(1):106–130. doi: 10.1016/0012-1606(75)90318-8. [DOI] [PubMed] [Google Scholar]
  13. PRITCHARD J. J., RUZICKA A. J. Comparison of fracture repair in the frog, lizard and rat. J Anat. 1950 Jul;84(3):236–261. [PMC free article] [PubMed] [Google Scholar]
  14. Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reddi A. H., Sullivan N. E. Matrix-induced endochondral bone differentiation: influence of hypophysectomy, growth hormone, and thyroid-stimulating hormone. Endocrinology. 1980 Nov;107(5):1291–1299. doi: 10.1210/endo-107-5-1291. [DOI] [PubMed] [Google Scholar]
  16. Scott-Savage P., Hall B. K. Differentiative ability of the tibial periosteum for the embryonic chick. Acta Anat (Basel) 1980;106(1):129–140. doi: 10.1159/000145174. [DOI] [PubMed] [Google Scholar]
  17. Silbermann M., Frommer J. Heterogeneity among chondrocytes of the mandibular condyle in foetal and postnatal mice. Arch Oral Biol. 1973 Dec;18(12):1549–1554. doi: 10.1016/0003-9969(73)90130-1. [DOI] [PubMed] [Google Scholar]
  18. Silbermann M., Frommer J. Phosphatases within the cartilage of the mandibular condyle of the mouse. J Anat. 1973 Dec;116(Pt 3):335–345. [PMC free article] [PubMed] [Google Scholar]
  19. Silbermann M., Frommer J. The nature of endochondral ossification in the mandibular condyle of the mouse. Anat Rec. 1972 Apr;172(4):659–667. doi: 10.1002/ar.1091720406. [DOI] [PubMed] [Google Scholar]
  20. Silbermann M., Frommer J. Ultrastructure of developing cartilage in the mandibular condyle of the mouse. Acta Anat (Basel) 1974;90(3):330–346. doi: 10.1159/000144342. [DOI] [PubMed] [Google Scholar]
  21. Silbermann M., Lewinson D., Gonen H., Lizarbe M. A., von der Mark K. In vitro transformation of chondroprogenitor cells into osteoblasts and the formation of new membrane bone. Anat Rec. 1983 Aug;206(4):373–383. doi: 10.1002/ar.1092060404. [DOI] [PubMed] [Google Scholar]
  22. Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981 Oct;26(1 Pt 1):99–105. doi: 10.1016/0092-8674(81)90037-4. [DOI] [PubMed] [Google Scholar]
  23. Timpl R., Furthmayr H., Beil W. Maturation of the immune response to soluble rat collagen: late appearance of antibodies directed to N-terminal sites of the 2-chain. J Immunol. 1972 Jan;108(1):119–125. [PubMed] [Google Scholar]
  24. Timpl R., Martin G. R., Bruckner P., Wick G., Wiedemann H. Nature of the collagenous protein in a tumor basement membrane. Eur J Biochem. 1978 Mar;84(1):43–52. doi: 10.1111/j.1432-1033.1978.tb12139.x. [DOI] [PubMed] [Google Scholar]
  25. von der Mark H., von der Mark K., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol. 1976 Feb;48(2):237–249. doi: 10.1016/0012-1606(76)90088-9. [DOI] [PubMed] [Google Scholar]
  26. von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]
  27. von der Mark K., von der Mark H. The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg Br. 1977 Nov;59-B(4):458–464. doi: 10.1302/0301-620X.59B4.72756. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES