Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2025 Nov 14;169(11):e70281. doi: 10.1111/jnc.70281

Cell Type‐Specific mTORC1 Signaling and Translational Control in Synaptic Plasticity and Memory

Ziying Huang 1,2, Niaz Mahmood 1,2, Shane Wiebe 1,2, Arkady Khoutorsky 3, Jean‐Claude Lacaille 4, Nahum Sonenberg 1,2,5,
PMCID: PMC12617833  PMID: 41236931

ABSTRACT

Synaptic plasticity and memory formation require de novo protein synthesis. The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) promotes mRNA translation initiation in the central nervous system. Recent research has uncovered that excitatory neurons, inhibitory neurons, and glia play distinct roles in modulating synaptic strength and encoding long‐term memory via mTORC1 signaling. In this review, we discuss the mechanisms by which mTORC1 regulates translation initiation in the brain and its cell type‐specific roles in shaping distinct forms of synaptic plasticity and memory. We also consider how dysregulated translational control contributes to neurological disorders and explore emerging technologies for therapeutic modulation of the mTORC1 pathway.

graphic file with name JNC-169-0-g004.jpg

Keywords: excitatory neurons, glia, interneurons, memory, mTORC1, synaptic plasticity, translation


The formation of long‐term memories depends on de novo protein synthesis, a process tightly regulated by the mechanistic/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. mTORC1 plays a central role in promoting mRNA translation in the central nervous system. Emerging evidence suggests that distinct brain cells, including excitatory neurons, inhibitory neurons, and glial cells, utilize mTORC1 signaling in a cell type‐specific manner to modulate synaptic plasticity and memory. This review summarizes the molecular mechanisms by which mTORC1 regulates translation initiation in various brain cell types and its contributions to different forms of synaptic plasticity and memory. Additionally, it presents novel approaches for investigating cell type‐specific translation and discusses the implications of dysregulated mTORC1 signaling in neurological disorders.

graphic file with name JNC-169-0-g002.jpg


Abbreviations

4E‐BP

eukaryotic initiation factor 4E‐binding protein

AAV

adeno‐associated virus

AD

Alzheimer's disease

AKT/PKB

AKT/protein kinase B

AMPAR

α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor

AMPK

AMP‐activated protein kinase

ASD

autism spectrum disorder

CAMKII

calcium/calmodulin‐dependent protein kinase II

CHAT

choline acetyltransferase

cKO

conditional knockout

CNS

central nervous system

DREADDs

designer receptors exclusively activated by designer drugs

eIF4E

eukaryotic initiation factor 4E

eIF4G

eukaryotic initiation factor 4G

E‐LTP

early‐LTP

EMX1

empty spiracles homeobox 1

ERK

extracellular signal‐regulated kinase

FKBP12

FK506‐binding protein 12

FMRP

fragile X messenger ribonucleoprotein 1

FXS

Fragile X syndrome

GABA

gamma‐aminobutyric acid

GAD2

glutamate decarboxylase 2

hKO

heterozygous knockout

KO

knockout

LARP1

La‐related protein 1

L‐LTP

late LTP

LTD

long‐term depression

LTM

long‐term memory

LTP

long‐term potentiation

MAPK

mitogen‐activated protein kinase

MEK

mitogen‐activated protein kinase kinase

mEPSCs

miniature excitatory postsynaptic currents

mGluR

metabotropic glutamate receptor

MNK

mitogen‐activated protein kinase‐interacting kinase

mTORC1

mechanistic/mammalian target of rapamycin complex 1

mTORC2

mechanistic/mammalian target of rapamycin complex 2

NMDAR

N‐methyl‐D‐aspartate receptor

PABP

poly(A)‐binding protein

PCs

Purkinje cells

PD

Parkinson's disease

PI3K

phosphoinositide 3‐kinase

PIC

pre‐initiation complex

PTEN

phosphatase and tensin homolog

PV

parvalbumin

RHEB

RAS homolog enriched in brain

RPTOR

regulatory associated protein of mTOR

S6K

ribosomal protein S6 kinase

scRNA‐Seq

single‐cell RNA sequencing

SST

somatostatin

STM

short‐term memory

TRAP

translating ribosome affinity purification

TSC

tuberous sclerosis complex

VGLUT1

vesicular glutamate transporter 1

VIP

vasoactive intestinal peptide

1. Introduction

Memory formation requires coordinated neuronal processes across multiple brain regions and circuits. At the cellular level, memory is encoded through activity‐dependent changes in synaptic strength, a phenomenon known as synaptic plasticity. Long‐term potentiation (LTP) and long‐term depression (LTD), the canonical forms of synaptic plasticity, represent candidate cellular mechanisms underlying learning and memory (Bliss and Gardner‐Medwin 1973; Choi and Kaang 2022). Enduring changes in synaptic strength require de novo protein synthesis, specifically through mRNA translation, which involves the stages of initiation, elongation, and termination. Among these, translation initiation is a highly regulated step, controlled by multiple intracellular signaling pathways (Kandel 2001; Klann and Sweatt 2008). The mRNA cap‐binding protein eukaryotic initiation factor 4E (eIF4E) is a critical factor in translation initiation, and its activity is modulated by mechanistic/mammalian target of rapamycin (mTOR) and mitogen‐activated protein kinase (MAPK)‐interacting kinases (MNKs). eIF2α phosphorylation can also selectively regulate translation initiation of mRNAs involved in synaptic function and plasticity (Ho‐Tieng et al. 2025; Trinh and Klann 2013). For instance, mTOR complex 1 (mTORC1)‐mediated control of translation initiation within excitatory neurons, inhibitory interneurons, and glia controls memory‐related plasticity and the diversity of associated behavioral phenotypes across distinct brain regions (Artinian et al. 2019; Khlaifia et al. 2022). These differences may underlie age‐dependent changes in cellular signaling, variations in activity‐dependent responses, and cell type‐specific forms of plasticity (Chaves et al. 2024; Gray and Spiegel 2019; Huang et al. 2024; Majumder et al. 2023). Recent discoveries have been driven by advances in genetic engineering, such as conditional knockout (cKO) mouse models and gene expression profiling, such as RNA‐Seq and Ribo‐Seq.

In this review, we provide an overview of the mTORC1 signaling pathway and how it regulates cap‐dependent translation initiation. We focus on how this pathway modulates synaptic plasticity and memory formation both circuit‐wide and through distinct mechanisms in specific cell types. We discuss emerging technologies that enable the precise dissection of mRNA translation control in vivo. These insights offer a novel perspective on how dysregulated protein synthesis contributes to cognitive disorders and inform the development of potential therapeutic interventions.

2. Overview of Translation Initiation and Its Link to Memory Formation

Precise translational control is critical for synaptic plasticity and long‐term memory (LTM) formation, enabling neurons to rapidly synthesize proteins in response to synaptic signals. Translation initiation is widely recognized as the rate‐limiting and most tightly regulated step in mRNA translation (Hershey et al. 2018). It commences with the assembly of the 43S pre‐initiation complex (PIC), comprising the 40S ribosomal subunit, the ternary complex (eIF2–GTP–Met‐tRNAᵢ), and initiation factors including eIF1, eIF1A, eIF3, and eIF5. The PIC's recruitment to the 5′ end of an mRNA is mediated by the eIF4F complex, which recognizes the five‐prime cap (5′ cap)—a methylated guanine nucleotide (m7G) that protects the mRNA and promotes translation. The eIF4F complex consists of the cap‐binding protein eIF4E, the RNA helicase eIF4A, and the scaffold protein eIF4G, and facilitates mRNA scanning and translation initiation codon recognition to form the 80S initiation complex (Amiri et al. 2025). eIF4E's activity is tightly controlled by mTORC1 and extracellular signal‐regulated kinase (ERK) pathways (Figure 1; Sonenberg and Hinnebusch 2009). eIF4E‐binding proteins (4E‐BPs) inhibit eIF4E by binding to it and blocking its interaction with eIF4G. mTORC1‐mediated phosphorylation of 4E‐BPs reduces their binding affinity for eIF4E, thereby promoting the formation of the eIF4F complex and stimulating translation. MNK1/2, activated downstream of ERK, phosphorylate eIF4E at Ser209 to modulate its activity and translation initiation (Sonenberg and Hinnebusch 2009).

FIGURE 1.

FIGURE 1

Translational control in the brain via mTORC1 signaling and eIF4E‐dependent translation. Schematic of the core pathways regulating eIF4E‐dependent translation initiation in the brain, emphasizing upstream regulation by the mTORC1 and ERK pathways. mTORC1 controls translation by phosphorylating 4E‐BP2 and releasing its repression of eIF4E, and by modulating S6 activity. The ERK pathway promotes the translation of specific subsets of mRNA via MNK1/2‐mediated phosphorylation of eIF4E. Initiation of translation involves the formation of the eIF4F complex, consisting of eIF4E (a cap‐binding protein), eIF4G (a scaffolding protein), and eIF4A (an RNA helicase), at the mRNA's 5′ cap. Pharmacological inhibitors of the PI3K/AKT/mTORC1 and RAS/ERK pathways, which are commonly employed in translational neuroscience research to modulate protein synthesis and investigate disease mechanisms, are also shown. 4E‐BP2, eIF4E binding protein 2; AKT, protein kinase B; DEPTOR, DEP domain‐containing mTOR interacting protein; eIF4F, eukaryotic initiation factor 4F; ERK, extracellular signal‐regulated kinase; FKBP12, FK506‐binding protein 12; MEK, MAPK/ERK kinase; MLST8, mammalian lethal with SEC13 protein 8; MNK1/2, MAPK‐interacting kinase 1/2; PABP, poly(A)‐binding protein; PI3K, phosphoinositide 3‐kinase; PRAS40, proline‐rich AKT substrate of 40 kDa; PTEN, phosphatase and tensin homolog; RAF, Raf proto‐oncogene, serine/threonine kinase; RAS, RAS proto‐oncogene, GTPase; RHEB, RAS homolog enriched in brain; RPTOR, regulatory associated protein of mTOR; S6, ribosomal protein S6; S6K, ribosomal protein S6 kinase; TSC1/2, tuberous sclerosis complex 1/2.

The requirement for protein synthesis in LTM was demonstrated six decades ago using the global protein synthesis inhibitor puromycin in goldfish and mice (Agranoff and Klinger 1964; Barondes and Cohen 1966; Flexner et al. 1963, 1965). It was administered either systemically or directly into the brain, leading to memory deficits across various behavioral paradigms. Subsequent work revealed that local synaptic translation supports activity‐dependent plasticity, prompting interest in the pathways that regulate neuronal mRNA translation (Kang and Schuman 1996; Tang et al. 2002). Many studies have demonstrated that eIF4E‐dependent translation pathways are crucial for LTM formation (Gindina et al. 2021; Hoeffer et al. 2011; Santini et al. 2014). In particular, mTORC1 has emerged as a central regulator of protein synthesis during memory consolidation and reconsolidation, including in recognition, associative, and spatial memory (Bramham et al. 2016; Costa‐Mattioli et al. 2009; Gkogkas et al. 2010; Graber et al. 2013; Hoeffer and Klann 2010; Santini et al. 2014; Wiebe et al. 2020). Although the three major cell types in the brain—excitatory neurons, inhibitory neurons, and glia—are known to contribute differentially to memory processes, the field has only recently begun to systematically reveal the cell type‐specific mechanisms regulating translation.

3. Translational Regulation by mTORC1 Signaling in Memory

3.1. Upstream Regulators and Downstream Effectors of mTORC1 Signaling

3.1.1. mTOR Complexes: Components and Functions

Originally identified as the target of the immunosuppressant rapamycin in yeast, mTOR is a serine/threonine kinase conserved across eukaryotes (Brown et al. 1994; Heitman et al. 1991; Sabatini et al. 1994; Stan et al. 1994). In mammals, mTOR is part of two functionally distinct multiprotein complexes: mTORC1 and mTORC2 (Loewith et al. 2002; Sabers et al. 1995). The complexes are defined by specific adaptor proteins: regulatory‐associated protein of mTOR complex 1 (RPTOR) in mTORC1 and RPTOR‐independent companion of mTOR complex 2 (RICTOR) in mTORC2 (Loewith et al. 2002; Sarbassov et al. 2004; Jacinto et al. 2004). In addition to mTOR, these distinct complexes share common components such as mTOR‐associated protein MLST8 (G protein β‐subunit‐like/GBL), and DEP domain containing mTOR interacting protein (DEPTOR) (Fonseca et al. 2007; Hara et al. 2002; Kim et al. 2002, 2003).

mTORC1 is rapamycin‐sensitive and primarily localizes to the surface of lysosomes, where it integrates signals related to proliferation, nutrient levels, and energy status (Brown et al. 1994; Fonseca et al. 2007; Stan et al. 1994; Thoreen et al. 2009). mTORC1 controls translation primarily through phosphorylation of two key substrate families: 4E‐BPs and the ribosomal S6 kinases (S6Ks) (Figure 1; Hay and Sonenberg 2004; Mutvei et al. 2020; Priya et al. 2023). Conversely, mTORC2 is largely rapamycin‐insensitive and regulates cytoskeletal organization and metabolism through phosphorylation of downstream kinases, including protein kinase B (PKB/AKT), protein kinase C (PKC), and serum/glucocorticoid‐regulated kinase (SGK) (Cameron et al. 2011; Guertin et al. 2006; Jacinto et al. 2004; Lu et al. 2011; Thoreen et al. 2009). However, prolonged exposure to rapamycin disrupts mTORC2 in some tissues and cell types (Lamming et al. 2012; Sarbassov et al. 2004, 2006).

mTORC1 and mTORC2 are functionally interconnected through multiple regulatory mechanisms that form a feedback circuit. mTORC2 promotes mTORC1 activity by phosphorylating AKT (at Ser473), which in turn enhances phosphorylation of AKT (at Thr308), thus promoting mTORC1 signaling (Baffi et al. 2021; Sarbassov et al. 2006, 2005; Yang et al. 2015). While mTORC1 and mTORC2 signaling have been extensively characterized in non‐neuronal systems, their organization and functional dynamics in different neuronal and glial subtypes remain an active area of investigation.

3.1.2. Upstream Regulators of mTORC1

mTORC1 regulates protein synthesis by integrating diverse extracellular and intracellular signals, including growth factors, amino acid availability, energy levels, and oxygen status (Hay and Sonenberg 2004), to modulate brain functions.

The phosphatidylinositol‐3‐kinase (PI3K)–AKT axis is activated upon growth factor stimulation (Figure 1). PI3K converts phosphatidylinositol‐4,5‐bisphosphate into phosphatidylinositol‐3,4,5‐trisphosphate, which facilitates the recruitment of AKT to the plasma membrane (Alessi et al. 1997; van Slegtenhorst et al. 1998; Vander Haar et al. 2007). AKT, activated by PI3K‐dependent kinase and mTORC2, phosphorylates and inhibits tuberous sclerosis complex (TSC)1/2, GTPase‐activating proteins for RAS homolog enriched in brain (RHEB), promoting RHEB‐GTP accumulation and mTORC1 activation (Long et al. 2005; Sancak et al. 2008; Stocker et al. 2003; Tee et al. 2003).

The MAPK/ERK cascade is activated by RAS in response to diverse signals, including growth factors, G protein‐coupled receptors, and chemokines (Ayush et al. 2016; Della Rocca et al. 1999; Luttrell et al. 2001; Venkatakrishnan et al. 2000; Xing et al. 1996). It enhances mTORC1 activity via p90 ribosomal S6 kinase‐mediated phosphorylation of TSC2 (at Ser939 and Thr1462) and direct phosphorylation of RPTOR (at Ser696 and Ser863), boosting 4E‐BP1‐dependent translation (Carriere et al. 2011; Ma et al. 2005; Mendoza et al. 2011; Roux and Blenis 2004; Roux et al. 2007).

Additional upstream regulators of mTORC1 that act through TSC1/2 include: AMP‐activated protein kinase (AMPK), regulated in development and DNA damage response 1 (REDD1), glycogen synthase kinase 3 (GSK3), and the Wnt signaling pathway. Under low ATP conditions, AMPK phosphorylates TSC2 (at Thr1227 and Ser1345) and RPTOR (at Ser722 and Ser792), promoting 14–3‐3 binding and inhibiting mTORC1 (Gwinn et al. 2008; Inoki et al. 2003; Kimura et al. 2003). In hypoxia, REDD1 activates TSC1/2 and inhibits AKT via protein phosphatase 2A, further repressing mTORC1 (Dennis et al. 2014; DeYoung et al. 2008; Kim et al. 2023; Sofer et al. 2005). Wnt signaling inhibits GSK3 in neurons, leading to decreased TSC2 activity and subsequent mTORC1 activation (Inoki et al. 2006; Ma et al. 2011; Urbanska et al. 2018).

3.1.3. Downstream Targets of mTORC1

mTORC1 regulates translation primarily by phosphorylating 4E‐BPs to control cap‐dependent initiation and S6K1/2 to control both initiation and elongation (Figure 1; Hay and Sonenberg 2004). mTORC1 substrates, including the 4E‐BPs and S6Ks, bind RPTOR via the TOR signaling (TOS) motif, enabling their phosphorylation by mTORC1 in a RHEB‐dependent manner (Long et al. 2005; Schalm and Blenis 2002; Tee et al. 2003).

4E‐BPs (4E‐BP1, 4E‐BP2, and 4E‐BP3) inhibit translation initiation by binding eIF4E and preventing eIF4F formation (Gingras et al. 1999; Lin et al. 1994; Mader et al. 1995; Marcotrigiano et al. 1999; Pause et al. 1994; Poulin et al. 1998; Sonenberg and Dever 2003). mTORC1 phosphorylates 4E‐BPs at Thr37, Thr46, Ser65, and Thr70, inducing their release from eIF4E and enhancing eIF4F complex formation (Bah et al. 2015; Gingras et al. 2001; Lin et al. 1994; Matsuo et al. 1997; Pause et al. 1994; Sonenberg and Gingras 1998). 4E‐BP1 has also been reported to be phosphorylated in vitro by kinases such as cyclin‐dependent kinase 1 (CDK1/CDC2), Protein kinase A (PKA), and MAPK (Fadden et al. 1997; Heesom et al. 2001; Lawrence Jr. et al. 1997; Ramírez‐Valle et al. 2010). However, the relevance of 4E‐BP1/2 phosphorylation by these kinases in the nervous system remains unexplored. 4E‐BPs do not broadly impact general protein synthesis (Colina et al. 2008; Gkogkas et al. 2013; Hooshmandi et al. 2021; Puighermanal et al. 2017; Ran et al. 2013), but rather selectively modulate the translation of specific mRNAs (Choo et al. 2008; Grolleau et al. 2002). In the context of synaptic plasticity and memory, this regulation predominantly operates via the mTORC1–4E‐BP2 axis and eIF4E‐dependent mechanisms (Alasad et al. 2020; Banko et al. 2005; Dowling et al. 2010; Hooshmandi et al. 2021). Target ‘eIF4E‐sensitive’ mRNAs typically possess structured 5′ UTRs or specialized motifs, such as 5′ terminal oligopyrimidine (TOP) tracts (Gkogkas et al. 2013; Hochstoeger and Chao 2024; Hochstoeger et al. 2024; Koromilas et al. 1992; Ran et al. 2013; Thoreen et al. 2012; Truitt et al. 2015).

S6K1/2 are downstream effectors of mTORC1 that promote both translation initiation and elongation. S6K1/2 phosphorylates eIF4B to enhance eIF4A helicase activity, facilitating translation of mRNAs with highly structured 5′ untranslated regions (UTRs) (Dennis et al. 2012; Raught et al. 2004; Rogers Jr. et al. 2001; Shahbazian et al. 2006). mTORC1‐activated S6K1 also phosphorylates and inhibits eukaryotic elongation factor 2 kinase (eEF2K), thereby increasing eEF2 activity and promoting mRNA translation elongation (Wang et al. 2001). Both kinases, particularly S6K2, phosphorylate ribosomal protein S6 at multiple sites (Ser235/236, Ser240/244, and Ser247; Ferrari et al. 1991; Holz and Blenis 2005; Nygård and Nilsson 1990; Pende et al. 2004; Roux et al. 2007). However, genetic studies indicate that these phosphorylation events have minimal impact on the rate of translation, suggesting that S6 phosphorylation may not directly regulate translation (Meyuhas 2015).

The translation of 5′TOP mRNAs is tightly controlled by mTORC1 signaling, directly through the mTORC1 downstream regulator La‐related protein 1 (LARP1) (Fonseca et al. 2015). LARP1 binds the 5′TOP motif to suppress translation, a process modulated by its interaction with RPTOR (Fonseca et al. 2015). Notably, 4E‐BPs exert an indirect yet predominant role in repressing 5′TOP translation (Hochstoeger and Chao 2024; Hochstoeger et al. 2024). Notably, this mode of translation regulation occurs independently of S6K1 activity and S6 phosphorylation (Chauvin et al. 2013; Nygård and Nilsson 1990; Pende et al. 2004; Stolovich et al. 2002; Tang et al. 2001; Thomas 1982). S6K1 and S6 may influence protein synthesis via alternative processes, such as ribosome biogenesis (Dufner and Thomas 1999; Slomnicki et al. 2016).

3.2. Translational Regulation of Synaptic Plasticity and Memory by mTORC1

3.2.1. mTORC1 in Healthy Brain Development and Function

mTORC1 signaling in the central nervous system (CNS) exhibits both conserved and unique regulatory dynamics. mTORC1 activity is modulated by metabotropic glutamate receptors (mGluRs), α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptors (AMPARs), N‐methyl‐D‐aspartate receptors (NMDARs), insulin receptors, and potassium channels (Gong et al. 2006; Hou and Klann 2004; Raab‐Graham et al. 2006; Wang et al. 2006). PI3K and ERK signaling pathways are major upstream regulators of mTORC1 in the brain (Banko et al. 2005; Briz and Baudry 2014; Kelleher 3rd et al. 2004; Tsokas et al. 2005, 2007). By integrating their signals, mTORC1 supports early brain development by influencing neuronal proliferation, differentiation, migration, polarity, and dendritic architecture (Brown et al. 2012; Paliouras et al. 2012; Shahani et al. 2017; Takei and Nawa 2014; Zou et al. 2011).

Translational control exerted by mTORC1 in the CNS relies predominantly on 4E‐BP1/2. 4E‐BP2 is the principal and most extensively studied paralog in neurons, whereas 4E‐BP1 is largely expressed in glia, and 4E‐BP3 is absent (Aguilar‐Valles et al. 2021; Banko et al. 2005). Phosphorylation of 4E‐BP2 by mTORC1 in the brain relieves its repression of cap‐dependent translation, thereby fine‐tuning synaptic plasticity. However, mTORC1 activity and 4E‐BP2 phosphorylation in the rodent forebrain decline significantly after birth, correlating with a marked reduction in neurogenesis beginning around postnatal day 10–21 (Bidinosti, Martineau, et al. 2010; Bidinosti, Ran, et al. 2010; Encinas et al. 2011; Huang et al. 2024; Kouloulia et al. 2019; Park et al. 2008). Strikingly, deamidation—rather than phosphorylation—is the prominent post‐translational modification of 4E‐BP2 in the brain, in sharp contrast to other organs (Bidinosti, Ran, et al. 2010; Kouloulia et al. 2019). Deamidation at N99/N102 enhances 4E‐BP2's stability by promoting its interaction with the RPTOR–cullin 4B ubiquitin ligase complex while weakening its binding to eIF4E (Bah et al. 2015; Bidinosti, Martineau, et al. 2010; Bidinosti, Ran, et al. 2010; Kouloulia et al. 2019). This modification not only selectively reshapes the neuronal translatome, particularly impacting mRNAs involved in mitochondrial function and nuclear factor κB signaling, but also alters synaptic transmission kinetics (Bidinosti, Ran, et al. 2010; Kouloulia et al. 2019). However, questions remain about the physiological consequences of 4E‐BP2 deamidation across neuronal populations.

In addition to 4E‐BP, mTORC1 also bolsters learning and memory via phosphorylation of S6 through S6K (Antion, Merhav, et al. 2008; Antion, Hou, et al. 2008; Huynh et al. 2014; Pende et al. 2004). S6K promotes mRNA translation in the brain to support stem cell proliferation, growth, and neuronal plasticity processes such as LTP, and mGluR‐LTD (Antion, Merhav, et al. 2008; Antion, Hou, et al. 2008; Kelleher 3rd et al. 2004; Puighermanal et al. 2017; Tsokas et al. 2007). S6K targets eIF4B and eEF2K, promoting mRNA translation elongation in the brain (Eom et al. 2014; Gildish et al. 2012; Im et al. 2009; Narayanan et al. 2008; Shahbazian et al. 2006). Pharmacological activation of mTORC1 by agents like ketamine increases S6 phosphorylation, reversing age‐related impairments in neural stem cell proliferation, thereby enhancing hippocampal neurogenesis in mice (Romine et al. 2015).

Together, these regulators of mTORC1 engage precise and context‐specific mechanisms to orchestrate stimulus‐dependent protein synthesis, which is critical for neuronal health and plasticity throughout life (Costa‐Mattioli et al. 2009; Graber et al. 2013; Hoeffer and Klann 2010; Santini et al. 2014, 2013). However, mTORC1 activation alone is insufficient to induce long‐term synaptic plasticity, suggesting that other protein synthesis‐related mechanisms, such as synaptic tagging, may act in coordination with mTORC1 to support sustained plasticity (Frey and Frey 2008). Nevertheless, a major question remains unresolved: which specific upstream metabolic cues and discrete mRNA subsets are engaged under temporally and spatially regulated conditions within distinct neuronal circuits? Addressing this gap will be vital, given emerging evidence that dysregulation of these finely tuned mechanisms contributes to cognitive deficits and neurological dysfunction (Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025; Huang et al. 2024; Tudor et al. 2016; Zhu et al. 2018).

3.2.2. Pharmacological Modulation of mTORC1 in the Brain

The canonical inhibitor rapamycin has been extensively used to investigate mTORC1's role in neural plasticity. Early work in invertebrate models such as Aplysia and Drosophila demonstrated that rapamycin blocks long‐lasting synaptic changes (Beaumont et al. 2001; Casadio et al. 1999; Khan et al. 2001; Yanow et al. 1998). Subsequent rodent studies have extended these findings to both hippocampal LTP and LTD (Deli et al. 2012; Fu et al. 2017; Hou and Klann 2004; Stoica et al. 2011; Tang et al. 2002). Specifically, rapamycin disrupts NMDAR‐dependent late‐phase LTP (L‐LTP) in the CA1 region of the hippocampus (Panja et al. 2009; Tang et al. 2002). Rapamycin also blocks dihydroxyphenyl glycine‐induced mTORC1 activation and mGluR‐LTD induction (Hou and Klann 2004; Huber et al. 2000, 2001). Beyond synaptic plasticity, rapamycin disrupts fear memory consolidation and reconsolidation across paradigms and species (Bekinschtein et al. 2007; Blundell et al. 2008; Deli et al. 2012; Gafford et al. 2011; Glover et al. 2010; Jobim et al. 2012; Mac Callum et al. 2014; Parsons et al. 2006; Tischmeyer et al. 2003). However, not all mTORC1 substrates are equally sensitive to rapamycin, as it differentially modulates S6Ks and 4E‐BPs (Choo et al. 2008). Inhibition of 4E‐BP phosphorylation requires more complete inhibition of mTOR kinase activity, which can be achieved with ATP‐competitive inhibitors (e.g., Torin1, PP242) that effectively block phosphorylation at critical sites (at Thr37/46 and Ser65) necessary for eIF4E dissociation (Feldman et al. 2009; Hsieh et al. 2010, 2012; Thoreen et al. 2012, 2009). Among these, Torin1 suppresses TOP mRNA translation and general cap‐dependent initiation in vitro (Thoreen et al. 2012), while PP242 prevents eIF4E hyperactivation and translation‐dependent chemically induced late LTP through 4E‐BP2 (Hsieh et al. 2010; Ran et al. 2013).

Other pharmacological tools, such as 4EGI‐1, which disrupts the eIF4E–eIF4G interaction (Figure 1), revealed that blocking translation initiation impairs fear memory consolidation but spares reconsolidation (Hoeffer et al. 2011). However, co‐administering 4EGI‐1 with the S6K1 inhibitor PF‐4708671 also impairs reconsolidation, underscoring the cooperative role of the axes downstream of mTORC1 in the persistence of associative memory (Huynh et al. 2014).

Overall, pharmacological studies show that mTORC1 selectively controls the translation of mRNAs involved in plasticity and that modulating this pathway may be a promising treatment strategy for neurodevelopmental disorders (NDDs). However, several critical knowledge gaps remain. The unique functions of mTORC1 within specific neuronal populations cannot be fully elucidated using traditional pharmacological approaches. Moreover, investigations into the circuit‐specific contributions of mTORC1 have largely been restricted to the forebrain and basal ganglia regions. Many other brain regions remain understudied, as do the divergent roles of mTORC1 signaling across different developmental stages. Future studies employing temporally controlled pharmacogenetic and optogenetic tools will be critical to addressing these gaps and uncovering the therapeutic potential of mTORC1 modulation in memory disorders and NDDs.

3.2.3. Evidence From Genetic Models

Genetic models targeting mTORC1 signaling components have illuminated its vital role in synaptic function and memory (Table 1). Global KO of its core components (e.g., mTOR, RPTOR, MLST8) is embryonic lethal, necessitating the use of heterozygous (h)KO or cKO models (Cloëtta et al. 2013; Guertin et al. 2006). RPTOR hKO, which inhibits mTORC1, impairs brain development, leading to smaller cell bodies, fewer dendrites, and microcephaly (Zhang et al. 2017); Loss of either upstream inhibitors (e.g., TSC1/2) or downstream translation suppressors (e.g., 4E‐BP2) mimics mTORC1 hyperactivation, causing abnormal dendritic spine morphology, increased spine density, and impaired synaptic formation (Bateup et al. 2011; Cox et al. 2018; Karalis et al. 2022; Niu et al. 2024; Ran et al. 2013; Tavazoie et al. 2005). Interestingly, while both TSC1/2 and 4E‐BP2 KO models show an increased excitatory‐to‐inhibitory synaptic (E/I ratio) input balance, as reflected in elevated miniature excitatory/inhibitory postsynaptic current (mEPSCs/mIPSCs) ratios, the specific synaptic alterations differ between the two models (Bateup et al. 2011; Ran et al. 2013). TSC1/2 loss reduces inhibitory transmission, as evidenced by a reduction in mIPSCs without any change in mEPSCs amplitude. In contrast, 4E‐BP2 deletion increases both excitation and inhibition, as indicated by increased mIPSCs amplitudes and mEPSCs amplitudes and frequencies (Bateup et al. 2011; Benthall et al. 2021; Gkogkas et al. 2010, 2013; Ran et al. 2013; Weston et al. 2014). These findings reveal that complex effects within the mTORC1 pathway differentially regulate synaptic balance and postsynaptic receptor trafficking.

TABLE 1.

Summary of mTORC1 pathway‐related synaptic plasticity and memory phenotypes in conditional genetic mouse models across diverse neuronal and glial populations.

Protein name Cell type mTORC1 activity Mouse model Recognition memory Spatial memory Associated memory Working memory Social memory Motor learning Electrophysiology Publication
NOL OPL NOR MWM BM CFC Cued FC T/Y‐maze SN (SPSN) Rotarod LTD LTP
TSC EXs NA
INs Tsc1 flx+flx :Dlx5/6‐Cre‐EGFP
INs‐PV Tsc1 flx/flx : Pvalb‐Cre Amegandjin et al. (2021)
INs‐SST Tsc1 flx/+ :Sst‐Cre:R26‐EYFP

Learning: ↑

Memory: ↑

24 h: ↑ Artinian et al. (2019)
INs‐PCs Tsc1 flx/flx :L7‐Cre

Reversal learning: ↓ (Water T‐maze)

Tsai et al. (2012)
RPTOR Full‐body Rptor −/+ Zhang et al. (2017)
EXs Rptor flx/flx : Camk2a‐Cre Wiebe et al. (2023); Zhu et al. (2018); De Gregorio et al. (2021)
INs Rptor flx/flx :Gad2‐Cre Huang et al. (2024); Wiebe et al. (2023); De Gregorio et al. (2021)
INs (CPu) CAG‐mTOR SL1+IT/+ :Dlx1‐CreER T2/+ Chen et al. (2024)
INs‐SST Rptor flx/flx : Sst‐Cre Learning: ↔ Memory: ↓

1 h: ↔

24 h: ↓

1 h: ↔

24 h: ↔

Artinian et al. (2019)
4E‐BP2 Full‐body Eif4ebp2 −/−

1 h: ↔

24 h: ↓

2 h: ↔

24 h: ↔

Lowering thresholds for L‐LTP Banko et al. (2005); Banko et al. (2007); Ran et al. (2013)
EXs Eif4ebp2 flx/flx :Camk2a‐Cre a Huang et al. (2024); Wiebe et al. (2019); Huang, Mahmood, Psycharis, et al. (2025); Huang, Mahmood, Lacaille, et al. (2025)
EXs (LA) Opto4E‐BP; CamK2α‐Cre

2 h: ↔

24 h: ↓

Alapin et al. (2023)
INs Eif4ebp2 flx/flx :Gad2‐Cre

Learning: ↔

Memory: ↓ a

1 h: ↓

24 h: ↓ a

Huang et al. (2024); Wiebe et al. (2019); Huang, Mahmood, Psycharis, et al. (2025); Huang, Mahmood, Lacaille, et al. (2025)
INs‐PV Eif4ebp2 flx/flx :Pvalb‐Cre Huang et al. (2024)
INs‐SST Eif4ebp2 flx/flx : Sst‐Cre Huang et al. (2024)
INs‐VIP Eif4ebp2 flx/flx : Vip‐Cre Huang et al. (2024)
PCs Eif4ebp2 flx/flx :L7‐Cre

Learning: ↓

Memory: ↓

24 h: ↔ Hooshmandi et al. (2021)
Glia‐ACs Eif4ebp2 flx/flx : Gfap‐Cre Wiebe et al. (2019)
S6K Full‐body S6k1−/−

Learning: ↔

Memory: 3rd day crossing ↓; 7th day crossing ↔

1 h: ↓

24 h: ↓

3 days: ↓

2 h: ↔

24 h: ↔

E‐LTP: ↓

L‐LTP: ↔

Antion, Merhav, et al. (2008); Antion, Hou, et al. (2008); Koehl et al. (2021)
Full‐body S6k2−/−

Learning: ↔

Memory: ↔

1 h: ↔

24 h: ↔

7 days: ↓

2 h: ↔

24 h: ↔

7 days: ↔

E‐LTP: ↔

L‐LTP: ↔

Antion, Merhav, et al. (2008); Antion, Hou, et al. (2008)

Note: Effects of both mTORC1 inhibition (e.g., via RPTOR deletion) and hyperactivation (e.g., via TSC1/2 or 4E‐BP2 deletion) are included. Synaptic plasticity outcomes (e.g., E‐LTP, L‐LTP LTD) and behavioral phenotypes are annotated based on cell type specificity. ↑, upregulated/enhanced; ↓, downregulated/impaired; ↔, no significant change.

Abbreviations: 4E‐BP2, eIF4E binding protein 2; ACs, astrocytes; CPu, caudate‐putamen; E‐LTP, early‐phase LTP; EXs, excitatory neurons; INs, inhibitory neurons; LA, lateral amygdala; L‐LTP, late‐phase LTP; LTD, long‐term depression; LTP, long‐term potentiation; PCs, Purkinje cells; PV, parvalbumin‐expressing interneurons; RPTOR, regulatory associated protein of mTOR; S6K, ribosomal protein S6 kinase; SST, somatostatin‐expressing interneurons; TBSopto, optogenetic theta burst stimulation; TSC1/2, tuberous sclerosis complex 1 and 2; VIP, vasoactive intestinal peptide‐expressing interneurons.

a

Unpublished data.

At the plasticity level, TSC2 hKO and 4E‐BP2 KO mouse models both display enhanced conversion of early LTP (E‐LTP) to L‐LTP, suggesting that removing the translational brakes lowers the threshold for long‐term plasticity changes (Banko et al. 2006, 2005; Ehninger et al. 2008; Ran et al. 2009; Stoica et al. 2011). However, mGluR‐LTD is abolished in TSC1 KO mice but enhanced in S6K1/2 double KO and 4E‐BP2 KO mice, possibly due to feedback relief or selective mRNA translation (Antion, Merhav, et al. 2008; Antion, Hou, et al. 2008; Banko et al. 2006; Bateup et al. 2011; Zhu et al. 2018). Meanwhile, short‐term synaptic plasticity that does not depend on protein synthesis, such as paired‐pulse facilitation, remains unaffected in mice lacking FK506‐binding protein 12 (FKBP12, which forms the rapamycin–FKBP12 inhibitory complex with mTOR), 4E‐BP2, or TSC1/2 in the brain, as expected (Benthall et al. 2021; Ehninger et al. 2008; Hoeffer et al. 2008; Ran et al. 2013; Stoica et al. 2011). These findings demonstrate the selective engagement of mTORC1‐mediated regulation of translation in long‐lasting but not transient forms of synaptic plasticity.

Behaviorally, 4E‐BP2 KO and TSC2 hKO mice display deficits in long‐term spatial and context‐associated fear memory, whereas S6K1 or S6K2 KO do not show spatial learning impairments (Antion, Merhav, et al. 2008; Antion, Hou, et al. 2008; Banko et al. 2005; Ehninger et al. 2008; Koehl et al. 2021). Recent optogenetic studies have linked amygdala‐specific 4E‐BP2 translation to cue‐associated fear memory, reinforcing its role in associative learning (Alapin et al. 2023; Oliveira et al. 2025). Notably, although short‐term memory (STM) is thought to be translation‐independent, deficits in working memory have been observed in models with RPTOR cKO in either excitatory or inhibitory neurons or 4E‐BP2 KO (Banko et al. 2007; Wiebe et al. 2023). These impairments may stem from developmental abnormalities caused by early loss of mTORC1. Finally, the role of 4E‐BP1 in memory remains underexplored. Future studies using temporally precise tools, such as Opto4EBP, may help distinguish between the developmental and acute roles of translation in STM (Alapin et al. 2023; Oliveira et al. 2025).

Taken together, the genetic models reveal how mTORC1 signaling influences neuronal connectivity, synaptic plasticity, and memory. They highlight the distinct contributions of individual mTORC1 regulators to specific types of memory formation and maintenance, reflecting the complex function of mTORC1‐dependent translation regulation in the brain. In the next section, we will discuss the cell type‐specific roles of mTORC1‐mediated translational control in synaptic plasticity and memory.

3.3. Cell Type‐Specific Translational Control via mTORC1 and 4E‐BPs in Memory

3.3.1. Studies of Excitatory Neurons Using cKO Models

In excitatory neurons, mTORC1 activity undergoes a significant decline during development, as shown by age‐dependent reductions in S6 and 4E‐BP1/2 phosphorylation (Bidinosti, Ran, et al. 2010; Huang et al. 2024; Kouloulia et al. 2019). Failure to appropriately reduce mTORC1 activity during critical periods can result in profound structural abnormalities: TSC1/2 deletion or mTORC1 hyperactive mutants cause impaired cell migration and enlarged brain size, which are partially reversed by rapamycin treatment (Carson et al. 2012; Ehninger et al. 2008; Kassai et al. 2014; Rozas et al. 2015).

In mature excitatory neurons, loss of 4E‐BP2 leads to altered dendritic spine morphology and impaired L‐LTP under physiological stimulation, underscoring the importance of finely tuned mTORC1 signaling for long‐term synaptic plasticity (Ran et al. 2013). However, these mechanisms appear dispensable for mGluR‐LTD and recognition memory, including object‐ and location‐based tasks (e.g., novel object location, object place learning, novel object recognition), which remain intact following deletion of either RPTOR or 4E‐BP2, or following designer receptor exclusively activated by designer drug (DREADD)‐mediated mTORC1 disruption within excitatory neurons (Table 1, Figure 2; Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025; Huang et al. 2024; Tudor et al. 2016; Zhu et al. 2018). These findings suggest that low basal mTORC1 activity in excitatory neurons may not be required for memory under low cognitive loads or weak stimulation protocols. Alternatively, parallel signaling pathways in excitatory neurons may support LTD and LTD‐dependent learning and memory, such as mTORC2, MAPK/ERK, and calcium/calmodulin‐dependent protein kinase II (CaMKII) (Zhu et al. 2018).

FIGURE 2.

FIGURE 2

Behavioral changes in memory paradigms following full‐body or cell type‐specific mTORC1 manipulation. Effects of cell type‐specific mTORC1 modulation on the performance of various behavioral tasks commonly used to assess associative, spatial, working, recognition, and social memory in mice. Loss of mTORC1 signaling is modeled by RPTOR cKO, while pathway hyperactivation is induced by deletion of TSC1/2 or 4E‐BP2 or by optogenetic inhibition of 4E‐BP2. Each behavioral outcome is mapped to the targeted cell population using Cre‐driver lines. 4E‐BP2, eIF4E binding protein 2; BM, Barnes maze; CFC, contextual fear conditioning; cued fear conditioning; eIF4F, eukaryotic initiation factor 4F; MLST8, mammalian lethal with SEC13 protein 8; mTOR, mechanistic target of rapamycin; MWM, Morris water maze; NOL, novel object location; NOR, novel object recognition; PCs, Purkinje cells; PV, parvalbumin‐expressing interneuron; RHEB, RAS homolog enriched in brain; RPTOR, regulatory associated protein of mTOR; SN, social novelty; SST, somatostatin‐expressing interneuron; TSC1/2, tuberous sclerosis complex 1/2; VIP, vasoactive intestinal peptide‐expressing interneuron.

Under more demanding paradigms, such as fear conditioning and the Morris water maze, eIF4E‐dependent translational control appears to be more prominently engaged in excitatory neurons (Table 1, Figure 2). For example, contextual fear conditioning induces extensive proteome remodeling in hippocampal excitatory and somatostatin‐positive inhibitory neurons, whereas other interneuron populations appear to fine‐tune synaptic transmission instead (Oliveira et al. 2025). However, our unpublished findings show that deletion of 4E‐BP2 in inhibitory neurons, but not excitatory neurons, impairs contextual fear memory (Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025). This suggests differential proteostatic mechanisms in hippocampal inhibitory versus excitatory neurons. In excitatory neurons, alternative mechanisms of translation initiation and elongation may support synaptic plasticity and memory formation when mTORC is impaired. For example, the excitatory eIF2α and ERK pathways have been implicated in contextual fear memory (Ho‐Tieng et al. 2025; Mahmood et al. 2024; Ryu et al. 2019; Sharma et al. 2020; Simbriger et al. 2021). The eIF2α regulatory pathway, particularly through its kinase PERK, modulates translation and regulates synaptic plasticity (Costa‐Mattioli et al. 2009; Trinh and Klann 2013; Zimmermann et al. 2018). Inhibiting PERK can improve memory performance (Sharma et al. 2018). Moreover, Zimmermann et al. (2018) that PERK deletion reduces eEF2 phosphorylation, thereby enhancing translation elongation and L‐LTP under mTORC1 inhibition (Zimmermann et al. 2018). Furthermore, optogenetic suppression of 4E‐BP2‐dependent translation via Opto4EBP disrupts long‐term cued fear memory, suggesting a temporally and regionally specific requirement for eIF4E‐dependent translation in amygdala excitatory neurons (Alapin et al. 2023). Together, these results highlight a potential division of translational regulation across circuits: mTORC1‐dependent translation may be critical for cued fear learning in amygdala excitatory neurons, whereas in the hippocampus, 4E‐BP2‐mediated translational control in inhibitory gamma‐aminobutyric acid (GABA)ergic neurons and translation regulation via other pathways may be more relevant for contextual fear learning (Table 1, Figure 2). Future studies using cell type‐ and region‐specific tools, such as Opto4EBP and cKOs of TSC1/2, RPTOR, or S6Ks, will be essential to further delineate these circuit‐specific mechanisms of translational control (Alapin et al. 2023; De Gregorio et al. 2021; Wiebe et al. 2019).

3.3.2. Studies of Inhibitory Neurons Using cKO Models

In contrast to excitatory neurons, mTORC1 remains highly active in GABAergic interneurons during early postnatal development (Amegandjin et al. 2021; Huang et al. 2024). Overactivation of mTORC1 via TSC1 cKO in either parvalbumin (PV)+ or somatostatin (SST)+ interneurons alters their intrinsic firing properties and disrupts inhibitory maturation, underscoring the importance of mTORC1 in interneuron development and circuit formation (Amegandjin et al. 2021; Benthall et al. 2021; Deng et al. 2021; Fu et al. 2012; Malik et al. 2019).

In interneurons, the mTORC1–4E‐BP2 axis appears to be essential for multiple forms of memory. Disruption of this axis in all GABAergic inhibitory neurons, through deletion of either RPTOR or 4E‐BP2, or post‐learning DREADD‐mediated mTORC1 disruption impairs forebrain‐dependent object location and recognition memory (Table 1, Figure 2; Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025; Huang et al. 2024). Our unpublished data indicate that interneuron 4E‐BP2 also plays a crucial role in context‐associated fear memory and spatial memory (Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025). Interestingly, recent studies highlighted the critical role of mTORC1‐mediated plasticity in SST+ interneurons in various forms of learning and memory, including recognition memory in object location, goal‐directed spatial learning, and contextual fear‐associated memory (Table 1, Figure 2; Alapin et al. 2023; Artinian et al. 2019; Honoré and Lacaille 2022; Michon et al. 2023). Specifically, SST+ interneurons' activity is necessary for object location learning; mTORC1‐mediated LTP at pyramidal‐SST synapses is sufficient to facilitate memory consolidation (Honoré and Lacaille 2022). Goal‐directed spatial learning recruits mTORC1‐dependent reward‐related activity in SST+ interneurons of the striatum, suggesting their involvement in encoding reward‐associated locations (Michon et al. 2023). Similarly, fear learning activates mTORC1 in SST+ cells, inducing persistent LTP and affecting Schaffer‐collateral plasticity in CA1 pyramidal neurons (Artinian et al. 2019; Oliveira et al. 2025). In addition, loss of either 4E‐BP2 or TSC1 in Purkinje cells (PCs), the principal inhibitory neurons of the cerebellar cortex, causes alterations in intrinsic excitability and spatial memory formation (Table 1, Figure 2; Hooshmandi et al. 2021; Tsai et al. 2012).

Besides these paradigms, motor learning and memory require mTORC1 in the hippocampus, striatum, and cerebellum (De Leonibus et al. 2003; Gerfen and Surmeier 2011; Ghiglieri et al. 2011; Wilhelm et al. 2023). Overexpression of mTOR (via CAG‐mTOR) impairs motor learning, whereas TSC1 deletion in direct but not indirect striatal projection neurons enhances habit formation (Benthall et al. 2021; Chen et al. 2024). Additionally, 4E‐BP2 or TSC1 deletion in PCs impairs performance in motor learning tasks (Hooshmandi et al. 2021; Tsai et al. 2012). These findings suggest that mTORC1 exerts circuit‐specific effects, with hyperactivation promoting or hindering performance depending on the task structure and neuronal subtype.

Despite their lower abundance, inhibitory neurons exert critical control over cognition. Overall, mTORC1‐dependent translation regulation in inhibitory neurons, especially through 4E‐BP2, is essential for long‐term recognition memory, spatial learning, and associated memory, and its dysfunction leads to profound cognitive impairments. However, the precise mechanisms by which mTORC1 signaling in inhibitory neurons shapes memory processes, likely by modulating inhibitory synaptic plasticity and the excitation–inhibition balance, remain poorly defined. Furthermore, the developmental vs adult‐specific functions of mTORC1 signaling in inhibitory neurons also need further delineation, particularly in the context of NDDs and memory disorders. Future studies employing cell type‐specific translatomic profiling will be crucial to identify downstream translational targets of 4E‐BP2 within interneurons and decipher its role in memory regulation.

3.3.3. Studies of Glial Cells Using cKO Models

Though understudied, glial mTORC1 signaling contributes to structural brain integrity, neuroinflammation, and potentially cognitive function. Deletion of TSC1/2 in astrocytes and radial glia causes hippocampal enlargement and pyramidal cell disorganization (Uhlmann et al. 2002; Way et al. 2009). RPTOR cKO in glia induces astrogliosis, implicating mTORC1 in glial responses to injury and activity (Zhang et al. 2017). Recent data suggest that mTORC1 dysregulation in glia contributes to memory deficits and neurodegenerative pathology, particularly in Alzheimer's disease (AD) (Bermudez et al. 2024; Querfurth and Lee 2021).

This emerging evidence suggests that glial mTORC1 signaling modulates synaptic plasticity indirectly through pathways involved in neuroinflammation, metabolic coupling, and myelination. Despite these insights, the behavioral consequences of glia‐specific mTORC1 dysregulation remain poorly defined in the context of neurodevelopmental and neurodegenerative conditions. Future research should prioritize cell type‐specific manipulations to investigate how mTORC1 signaling in astrocytes, microglia, and oligodendrocytes modulates the neuronal microenvironment and affects cognition in disease models. This knowledge will be pivotal to advancing therapeutic strategies that target glial dysfunction as a modifiable contributor to cognitive decline and neurodegeneration.

4. Technological Advances for Cell Type‐Specific Research

In the previous section, we summarized recent discoveries on the cell‐type specific role of mTORC1 and translation in learning and memory. These advances have been made possible by powerful technologies—including genetic models, viral vectors, chemogenetic/optogenetic tools, as well as transcriptomic/translatomic approaches, which allow researchers to study translational control across distinct brain cell populations. In this section, we discuss these methods in detail and highlight how they have enabled dissection of mTORC1‐dependent translation regulation in memory processes.

4.1. Genetic Systems

The Cre‐loxP system remains the principal tool for cell type‐specific gene manipulation, enabling the generation of cKO mouse models in which loxP‐flanked genes are selectively deleted in distinct cell populations. Such models have provided crucial insights into the cell type‐specific regulation of mTORC1 in memory (Table 1, Figure 2). Neuron‐specific promoters, such as CaMKII subunit alpha (Camk2a) and empty spiracles homeobox 1 (Emx1), are commonly used to drive Cre expression in forebrain excitatory neurons, while the glutamic acid decarboxylase 2 (Gad2) and vesicular GABA transporter (Vgat) promoters are used to target genes in GABAergic neurons (Huber and Ernsberger 2006). Using these, Huang et al. (2024) demonstrated that mTORC1 activity in inhibitory, but not excitatory, neurons is essential for hippocampus‐dependent memory (Huang et al. 2024). Interneurons subtype‐specific manipulation of mTORC1 has been achieved using promoters like Sst, Pv, Vip, and L7 (Amegandjin et al. 2021; Artinian et al. 2019; Hooshmandi et al. 2021; Huang et al. 2024). Other promoters used include choline acetyltransferase (Chat), dopamine receptor D1a (Drd1a), and preprotachykinin 1 (Tac1)—an extensive promoter database is available from the Allen Brain Atlas (http://connectivity.brain‐map.org/transgenic/). However, many of these promoters initiate expression early in development (e.g., Emx1: E9.5; Gad2: E17; Chat: E11), which may confound studies by affecting neuronal development or causing embryonic lethality (Bayer et al. 1999; Dupuy and Houser 1996; Gulisano et al. 1996; Huber and Ernsberger 2006). To address this, tamoxifen (TAM)‐inducible CreER systems are valuable tools to bypass the developmental effects of gene deletion in animals. Here, Cre recombinase is fused to a modified estrogen receptor (Cre‐ERT2) that is activated by TAM (or its active metabolite 4‐hydroxytamoxifen, 4‐OHT) but not endogenous estrogens (Indra et al. 1999). However, optimal TAM dosing is critical as low doses yield incomplete recombination, while high doses can be toxic (Donocoff et al. 2020; Ilchuk et al. 2022).

Viral vectors have become established tools for genetic manipulation in brain cells. These applications include using designed adeno‐associated viruses (AAVs) since they allow for efficient gene delivery, specific nervous cell tropism, and sustained transgene expression. AAVs are used to introduce site‐specific recombinases to control gene expression. The three most common recombinases used are Cre, Flp, and Dre; these enzymes recognize the DNA target sites loxP, FRT, and Rox respectively (Liu et al. 2020). Placing such recombinase genes under the control of cell type–specific promoters within AAVs allows the selective activation or deletion of a target gene in specific neuronal or glial populations. Intracranial delivery of recombinase‐expressing AAVs at chosen developmental or behavioral stages allows for more precise functional dissection of target genes. It should be noted that the choice of AAV serotypes and dose is an important determinant in the efficiency of transduction. For instance, AAV2 and AAV5 exhibit strong neuronal specificity, whereas AAV8 and AAV9 demonstrate broader tropism, efficiently transducing both neuronal and non‐neuronal cell types, with AAV9 notable for its ability to cross the blood–brain barrier (Burger et al. 2004; O'Carroll et al. 2020). Some serotypes like AAV1, AAV5, and AAV8 seem to be involved in gliotoxicity (Howard et al. 2008; Taymans et al. 2007). Therefore, vector selection and the optimization of dosage must be taken into consideration.

4.2. Chemogenetic and Optogenetic Tools

Beyond genetic deletions, chemogenetic and optogenetic tools provide spatial and temporal control of neuronal activity. Among these, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) can indirectly modulate signaling pathways such as mTORC1 (Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025). However, because DREADDs‐induced activation of engineered G protein‐coupled receptors can engage multiple downstream pathways, it is difficult to isolate the specific contributions of mTORC1 or translation per se. The Klann lab has developed several innovative chemogenetic and optogenetic tools that overcome this limitation, providing direct, cell type‐specific control of protein synthesis that enables researchers to dissect its role in memory formation. First, chemogenetically inducible protein synthesis inhibition uses an engineered, Cre‐dependent, drug‐inducible form of the double‐stranded RNA‐activated protein kinase (iPKR) (Shrestha et al. 2020). Upon administration of its inducer, Asunaprevir, iPKR phosphorylates eIF2α at Ser51, a modification that suppresses translation initiation and is reversible within hours after induction. Second, Opto4EBP enables light‐controlled suppression of cap‐dependent translation by activating a modified 4E‐BP2 (with mutations at the rapamycin‐sensitive late phosphorylation sites Ser65 and Thr70), allowing both spatial and temporal resolution (Alapin et al. 2023; Böhm et al. 2021; Dawson et al. 2020). Other optogenetic tools, such as photoactivatable genetically encoded RNA‐binding proteins, also provide reversible control over translation and are promising approaches for future research of cap‐dependent translation processes (Liu et al. 2022; Weissenboeck et al. 2023). Third, shmiR‐Eif4e is a short hairpin RNA targeting Eif4e embedded in a miRNA backbone and controlled by tetracycline‐responsive elements that enable chemogenetic eIF4E knockdown (Shrestha et al. 2020).

These tools provide the means for acute, reversible, and cell type‐specific manipulation of translation during learning and memory, making them particularly valuable for probing cause and effect relationships in plasticity. Future work should focus on applying these tools to in vivo experiments to dissect cell type and circuit‐specific translation dynamics during synaptic changes, memory consolidation, and pathological conditions.

4.3. Transcriptomic and Translatomic Technologies

Transcriptomics allows detailed cell type‐specific analysis of gene expression. Single‐cell RNA sequencing (scRNA‐Seq) has revealed the cellular heterogeneity of the brain and distinct transcriptional signatures across cell types (Eze et al. 2021; Kilfeather et al. 2024; Zeng et al. 2023). By profiling the expression of mTORC1 components in different conditions or in cells lacking mTORC1 components, scRNA‐Seq can help infer how translation is regulated by mTORC1. In addition to scRNA‐Seq, transcriptomic techniques such as cellular indexing of transcriptomes and epitopes by sequencing, which tags cell‐surface proteins alongside RNA profiling, and Patch‐Seq, which links a neuron's physiological properties to its gene expression pattern, enable detailed mapping of brain cell molecular identities and functions (Kumar et al. 2022; Shao et al. 2023).

However, transcriptomic tools only capture transcript abundance, providing no information on translational output. This gap has been addressed by techniques such as translating ribosome affinity purification (TRAP)‐Seq and RiboTag, which enable the isolation of ribosome‐associated mRNAs from genetically defined cell types (Choe and Cho 2020; Heiman et al. 2008). These techniques use genetically tagged ribosomal protein—either L10a (in TRAP) or Rpl22 (in RiboTag)—in different cell types so that any mRNA bound to the ribosomes can be purified and sequenced, thereby providing insights into transcripts that are actively translated in selective cell types. Studies have examined the impact of 4E‐BP1 or 4E‐BP2 deletion in microglia, nociceptors, and interneurons in the context of pain and memory (Bermudez et al. 2024; Lister et al. 2025, 2024; Simbriger et al. 2021; Wong et al. 2023; Huang, Mahmood, Psycharis, et al. 2025; Huang, Mahmood, Lacaille, et al. 2025). It is noteworthy that methods like TRAP‐Seq have limitations. For example, there is a bias as to which mRNAs are captured due to ribosomal heterogeneity and uneven L10a expression, especially when produced via AAV injection (Imai et al. 2023; Shi et al. 2017). TRAP‐Seq also lacks the capacity to distinguish between actively elongating polysomes and stalled ribosomes, and it does not provide codon‐level resolution of ribosome positioning along mRNA transcripts, which is achieved by ribosome footprinting (Ribo‐Seq). In Ribo‐Seq, only the short fragments of mRNA protected by ribosomes are sequenced, enabling single nucleotide mapping of ribosomal positions along transcripts. Although Ribo‐Seq in its standard form is not cell type‐specific, selectivity can be achieved by combining it with TRAP or RiboTag, enabling codon‐level analysis in genetically defined cell populations (Doroudgar et al. 2019; Ingolia 2016; Juntawong et al. 2014).

Many of the above techniques have been applied across various brain cell types. In glial cell studies, fluorescence‐ and magnetic‐activated cell sorting were combined with gene expression analyses to provide robust enrichment of astrocytes, microglia, and oligodendrocytes (Jeffries et al. 2021; Li et al. 2025). It should be noted that microglia may undergo rapid morphological and proteomic changes in vitro and ex vivo. These alterations are influenced by environmental and experimental factors, including nutrient composition and growth factor supplementation, which impact mTORC1 components (e.g., mTOR) and its upstream and downstream effectors (e.g., RHEB, eIF4E) (Lloyd et al. 2024). Such changes can significantly affect the interpretation of mTORC1‐related signaling pathways and should be accounted for when analyzing studies of glial mTORC1 function.

The ability to control and monitor protein synthesis at the level of specific brain circuits will be crucial to resolving the complexity of translational regulation in memory and identifying precise therapeutic targets in cognitive disorders.

5. Dysregulation of Translational Control in Neurological Disorders

5.1. Dysregulated mRNA Translation in Neurodevelopmental Disorders

NDDs emerge during development and result in impairments that disrupt daily activities and overall quality of life (Morris‐Rosendahl and Crocq 2020). The Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) includes a comprehensive list of NDDs, including autism spectrum disorder (ASD), intellectual disability, attention deficit/hyperactivity disorder, and several distinct learning and motor disorders (American Psychiatric Association and American Psychiatric Association 2013). Dysregulated mRNA translation, including alterations in mTORC1–4E‐BP2 activity, has been implicated in ASD‐like behaviors (Hooshmandi et al. 2020). Mutations in the genes encoding various factors that regulate translation (eIF4E, eIF4G1, GRB10‐interacting GYF protein 1 (GIGYF1), GIGYF2, and zinc finger protein 598) were identified in people with autism (Simons Foundation Autism Research Initiative, SFARI database). In addition, mutations in TSC2 (but not TSC1) have a propensity to cause cyst‐like tubers that are associated with ASD (Numis et al. 2011). Moreover, heterozygous deletion of either Tsc2 alone or both Tsc1 and Tsc2 induces ASD‐like phenotypes in mice (Kashii et al. 2023). Notably, homozygous deletion of either Tsc1 or Tsc2 is embryonic lethal (Kobayashi et al. 2001; Rennebeck et al. 1998).

Fragile X syndrome (FXS) is the most common monogenic cause of ASD. It results from a deficiency of fragile X messenger ribonucleoprotein (FMRP), an RNA binding translational repressor encoded by FMR1 (Hagerman et al. 2017; Schaeffer et al. 2003). Loss of FMRP in patients with FXS and Fmr1 KO mice leads to an increase in general mRNA translation due to hyperactivation of mTORC1 and ERK signaling, resulting in FXS pathology (Darnell et al. 2001; Osterweil et al. 2010; Sharma et al. 2010). As a result, studies have suggested that targeting mTORC1 is a therapeutic strategy for FXS. Genetic reduction of S6K1 reversed exaggerated LTD, abnormal neuronal morphology, and motor and memory deficits in Fmr1 KO mice (Bhattacharya et al. 2012). Treatment with the small molecule 4EGI‐1, which inhibits the eIF4E‐eIF4G interaction, improved memory deficiencies and abnormal mGluR‐LTD in Fmr1 KO mice (Santini et al. 2017). Metformin, a common antidiabetic drug, has been shown to improve core deficits in a FXS mouse model (Choi et al. 2024; Gantois et al. 2017), by restoring proper eIF4E phosphorylation. Based on the success of metformin in correcting core FXS phenotypes in preclinical settings, several clinical trials (NCT03862950, NCT03479476) are either ongoing or recently completed. If successful, this strategy could significantly enhance the quality of life of individuals with FXS. Moreover, parent‐implemented language intervention alone or in combination with lovastatin (which can inhibit mTORC1) significantly improved behavioral outcomes in patients with FXS (Thurman et al. 2020). Nevertheless, these findings indicate the therapeutic promise of normalizing dysregulated translation by modulating mTORC1 in FXS and potentially other ASD‐related disorders.

A recent study demonstrated that mutations in KICSTOR subunit 2 (KICS2) affect the KICSTOR (KPTN, ITFG2, C12orf66, and SZT2 regulatory) complex, which negatively regulates mTORC1 signaling, resulting in intellectual disability (Buchert et al. 2025). This disruption activates mTORC1, resulting in impaired ciliary function that is implicated in epilepsy and psychiatric comorbidities (Liu et al. 2021). Indeed, hyperactivation or overexpression of mTOR is a defining molecular feature of a class of neurodevelopmental epilepsies (Crino 2020). These data consolidate mTORC1‐dependent translation as a pivotal pathway in neurodevelopmental pathophysiology and a compelling target for intervention.

5.2. Neurodegenerative Diseases

AD, the most common neurodegenerative disorder, is characterized by the accumulation of amyloid β (Aβ) plaques and the formation of neurofibrillary tangles caused by hyperphosphorylated tau (Pradeepkiran et al. 2024). These pathological features contribute to neuronal cell death and subsequent loss of synaptic connections, resulting in cognitive impairment (Ittner and Götz 2011). Post‐mortem analyses revealed mTORC1 hyperactivation in the hippocampus and inferior parietal lobule, evidenced by elevated phosphorylation of mTORC1 components including mTOR, RPTOR, and S6K (Sun et al. 2014; Tramutola et al. 2015). It has been demonstrated that mTORC1 hyperactivation indirectly affects tau phosphorylation in mice, indicating a contribution to neurodegenerative processes (Caccamo et al. 2013). Activation of mTORC1 inhibits autophagy, a critical pathway involved in clearing Aβ and other misfolded proteins (Li et al. 2017). Preclinical studies indicate that treatment with mTOR inhibitors such as rapamycin can improve cognitive impairments associated with AD (Barbour et al. 2024; Ding et al. 2021). Other mTOR inhibitors, such as OSI‐027, AZD2014, and AZD8055, have shown promising effects in reducing tau levels (Silva et al. 2020). However, the role of mTORC1 signaling in AD is complex, with conflicting findings regarding its impact. Some studies report that suppressing mTOR signaling reduces amyloid pathology as mTORC1 activity is often elevated in the AD brain (Caccamo et al. 2015, 2014). Meanwhile, other work suggests that in AD models, inhibiting mTORC1 impairs LTP (Ma et al. 2010). More recently, depletion of translation repressors 4E‐BP1/2 (akin to hyperactivated mTORC1 and 4E‐BP1/2 hyperphosphorylation) in microglial (BV2) cells mitigates Aβ oligomer toxicity, and 4E‐BP2 hKO preserves cognition in AβO‐infused mice (Bermudez et al. 2024; Ribeiro et al. 2024). Future research could prioritize cell type‐specific manipulations to investigate how mTORC1 signaling in glial cells affects cognition in disease models. Particular attention should be given to 4E‐BP1, which is predominantly expressed in glial cells and has been shown to be upregulated in Alzheimer's disease models (Baleriola et al. 2014; Bermudez et al. 2024; Gouveia Roque et al. 2023; Michopoulou et al. 2022). These findings imply a complex role of translation initiation in AD pathophysiology and indicate the need for further investigation into its cell‐type specific functions.

In Parkinson's disease (PD), α‐synuclein accumulation generates Lewy bodies, which disrupt dopaminergic neurons, leading to impaired motor activity (Srinivasan et al. 2021). Lewy bodies engender neurotoxicity by disrupting the TSC1/2 complex, resulting in mTORC1 hyperactivation and aberrant mRNA translation (Khan et al. 2023). Post‐mortem PD brains exhibited reduced TSC1/2 levels, and pharmacological inhibition of mTORC1 promotes the clearance of α‐synuclein (Bové et al. 2011). Mutations in EIF4G1 were reported in familial PD (Chartier‐Harlin et al. 2011); however, their frequency and clinical relevance remain debatable due to their rarity and limited functional evidence (Blanckenberg et al. 2014; Lesage et al. 2012; Nishioka et al. 2014). 4E‐BP1 overexpression enhances the mitochondrial unfolded protein response and suppresses PD‐linked pathogenic insults (Dastidar et al. 2020). Using chemogenetic tools or genetic mouse models targeting midbrain dopaminergic neurons to modulate 4E‐BP1/2 levels may provide valuable insights into the mechanisms underlying PD (Bäckman et al. 2006; Lin et al. 2012). Dysregulated mTORC1 signaling is also observed in other neurodegenerative diseases: amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington's disease, as described in detail in a recent review (Querfurth and Lee 2021).

5.3. Psychiatric Disorders

Major depressive disorder (MDD) is a highly prevalent psychiatric condition primarily characterized by mood disturbances, which may be accompanied by cognitive impairments (Baxter et al. 2014). Various pharmacological treatments are available, including selective norepinephrine or serotonin reuptake inhibitors, and tricyclic antidepressants; however, 30%–40% of those with MDD do not respond to them (Kupfer 2005; Rizvi et al. 2014; Warden et al. 2007). Ketamine, an NMDAR antagonist, produces fast‐acting antidepressant effects and is approved in the United States and Canada for treatment‐resistant MDD (Lewis et al. 2023). A key mechanism underlying ketamine's effects involve activating the mTORC1–4E‐BP signaling pathway (Aguilar‐Valles et al. 2021; Li et al. 2010; Zhou et al. 2014). 4E‐BPs in inhibitory interneurons mediate the ketamine action in mouse models, as their deletion from inhibitory neurons impacts the depression behavioral response to ketamine and affects synaptic plasticity (Aguilar‐Valles et al. 2021). This suggests that mTORC1‐mediated mRNA translational control may be crucial to treating MDD.

6. Conclusions and Prospective

The recognition of mTORC1 signaling and eIF4E‐dependent translational control as critical regulators of synaptic plasticity and memory formation has broadened our understanding of biological processes and pathological dysregulation in the brain. With advances in gene editing technologies, it is now possible to correct mutations in key translational regulators at the genomic level. Furthermore, RNA therapeutics, including antisense oligonucleotides and RNA interference, are being developed to target specific mRNA transcripts for degradation or translation repression, offering highly specific treatment strategies for diseases involving dysregulated protein synthesis. Despite these promising advances, several questions remain. Persistent gaps in our understanding include the cell type‐specific regulation of mTORC1 signaling and the selective control of mRNA translation by 4E‐BPs within diverse neuronal and glial populations, particularly in disease. Moreover, the precise temporal windows during which protein synthesis is necessary to support distinct types of memory formation remain poorly understood, limiting our ability to determine the best timepoints for interventions. Addressing these questions will require applying cell type‐resolved transcriptomic and translatomic profiling and temporally and regionally controlled genetic manipulations in various disease‐relevant models. Future research investigating these translational mechanisms could inform the design of novel targeted therapies for various neurodevelopmental and neurodegenerative disorders.

Author Contributions

Ziying Huang: writing – review and editing, writing – original draft, conceptualization, visualization. Niaz Mahmood: writing – review and editing, writing – original draft. Shane Wiebe: writing – review and editing. Arkady Khoutorsky: writing – review and editing. Jean‐Claude Lacaille: writing – review and editing. Nahum Sonenberg: writing – review and editing, funding acquisition, supervision.

Consent

The authors have nothing to report.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgements

We thank High‐Fidelity Science Communications for assistance with manuscript editing. We thank Wayne S. Sossin for insightful discussions. Figures were created with BioRender.com.

Huang, Z. , Mahmood N., Wiebe S., Khoutorsky A., Lacaille J.‐C., and Sonenberg N.. 2025. “Cell Type‐Specific mTORC1 Signaling and Translational Control in Synaptic Plasticity and Memory.” Journal of Neurochemistry 169, no. 11: e70281. 10.1111/jnc.70281.

Data Availability Statement

The authors have nothing to report.

References

  1. Agranoff, B. W. , and Klinger P. D.. 1964. “Puromycin Effect on Memory Fixation in the Goldfish.” Science 146, no. 3646: 952–953. 10.1126/science.146.3646.952. [DOI] [PubMed] [Google Scholar]
  2. Aguilar‐Valles, A. , De Gregorio D., Matta‐Camacho E., et al. 2021. “Antidepressant Actions of Ketamine Engage Cell‐Specific Translation via eIF4E.” Nature 590, no. 7845: 315–319. 10.1038/s41586-020-03047-0. [DOI] [PubMed] [Google Scholar]
  3. Alapin, J. M. , Mohamed M. S., Shrestha P., et al. 2023. “Opto4E‐BP, an Optogenetic Tool for Inducible, Reversible, and Cell Type‐Specific Inhibition of Translation Initiation.” bioRxiv. 10.1101/2023.08.30.554643. [DOI]
  4. Alasad, K. , Voeltzke K., Levin L., Reifenberger G., Leprivier G., and Rotblat B.. 2020. “4EBP1/2 Are Active Under Standard Cell Culture Conditions to Regulate the Translation of Specific mRNAs.” Cell Death and Disease 11, no. 11: 968. 10.1038/s41419-020-03182-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alessi, D. R. , James S. R., Downes C. P., et al. 1997. “Characterization of a 3‐Phosphoinositide‐Dependent Protein Kinase Which Phosphorylates and Activates Protein Kinase Balpha.” Current Biology 7, no. 4: 261–269. 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
  6. Amegandjin, C. A. , Choudhury M., Jadhav V., et al. 2021. “Sensitive Period for Rescuing Parvalbumin Interneurons Connectivity and Social Behavior Deficits Caused by TSC1 Loss.” Nature Communications 12, no. 1: 3653. 10.1038/s41467-021-23939-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. American Psychiatric Association, D., & American Psychiatric Association, D . 2013. Diagnostic and Statistical Manual of Mental Disorders: DSM‐5. Vol. 5. American psychiatric association. 10.1097/NMD.0b013e3182a2168a. [DOI] [Google Scholar]
  8. Amiri, M. , Mahmood N., Tahmasebi S., and Sonenberg N.. 2025. “eIF4F‐Mediated Dysregulation of mRNA Translation in Cancer.” RNA 31, no. 3: 416–428. 10.1261/rna.080340.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Antion, M. D. , Hou L., Wong H., Hoeffer C. A., and Klann E.. 2008. “mGluR‐Dependent Long‐Term Depression Is Associated With Increased Phosphorylation of S6 and Synthesis of Elongation Factor 1A but Remains Expressed in S6K‐Deficient Mice.” Molecular and Cellular Biology 28, no. 9: 2996–3007. 10.1128/mcb.00201-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Antion, M. D. , Merhav M., Hoeffer C. A., et al. 2008. “Removal of S6K1 and S6K2 Leads to Divergent Alterations in Learning, Memory, and Synaptic Plasticity.” Learning and Memory 15, no. 1: 29–38. 10.1101/lm.661908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Artinian, J. , Jordan A., Khlaifia A., et al. 2019. “Regulation of Hippocampal Memory by mTORC1 in Somatostatin Interneurons.” Journal of Neuroscience 39, no. 43: 8439–8456. 10.1523/jneurosci.0728-19.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ayush, O. , Jin Z. W., Kim H. K., Shin Y. R., Im S. Y., and Lee H. K.. 2016. “Glutamine Up‐Regulates MAPK Phosphatase‐1 Induction via Activation of ca(2+)→ ERK Cascade Pathway.” Biochemistry and Biophysics Reports 7: 10–19. 10.1016/j.bbrep.2016.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bäckman, C. M. , Malik N., Zhang Y., et al. 2006. “Characterization of a Mouse Strain Expressing Cre Recombinase From the 3′ Untranslated Region of the Dopamine Transporter Locus.” Genesis 44, no. 8: 383–390. 10.1002/dvg.20228. [DOI] [PubMed] [Google Scholar]
  14. Baffi, T. R. , Lordén G., Wozniak J. M., et al. 2021. “mTORC2 Controls the Activity of PKC and Akt by Phosphorylating a Conserved TOR Interaction Motif.” Science Signaling 14, no. 678: eabe4509. 10.1126/scisignal.abe4509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bah, A. , Vernon R. M., Siddiqui Z., et al. 2015. “Folding of an Intrinsically Disordered Protein by Phosphorylation as a Regulatory Switch.” Nature 519, no. 7541: 106–109. 10.1038/nature13999. [DOI] [PubMed] [Google Scholar]
  16. Baleriola, J. , Walker C. A., Jean Y. Y., et al. 2014. “Axonally Synthesized ATF4 Transmits a Neurodegenerative Signal Across Brain Regions.” Cell 158, no. 5: 1159–1172. 10.1016/j.cell.2014.07.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Banko, J. L. , Hou L., Poulin F., Sonenberg N., and Klann E.. 2006. “Regulation of Eukaryotic Initiation Factor 4E by Converging Signaling Pathways During Metabotropic Glutamate Receptor‐Dependent Long‐Term Depression.” Journal of Neuroscience 26, no. 8: 2167–2173. 10.1523/jneurosci.5196-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Banko, J. L. , Merhav M., Stern E., Sonenberg N., Rosenblum K., and Klann E.. 2007. “Behavioral Alterations in Mice Lacking the Translation Repressor 4E‐BP2.” Neurobiology of Learning and Memory 87, no. 2: 248–256. 10.1016/j.nlm.2006.08.012. [DOI] [PubMed] [Google Scholar]
  19. Banko, J. L. , Poulin F., Hou L., DeMaria C. T., Sonenberg N., and Klann E.. 2005. “The Translation Repressor 4E‐BP2 Is Critical for eIF4F Complex Formation, Synaptic Plasticity, and Memory in the Hippocampus.” Journal of Neuroscience 25, no. 42: 9581–9590. 10.1523/jneurosci.2423-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Barbour, A. J. , Gourmaud S., Lancaster E., et al. 2024. “Seizures Exacerbate Excitatory: Inhibitory Imbalance in Alzheimer's Disease and 5XFAD Mice.” Brain 147, no. 6: 2169–2184. 10.1002/alz.067907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Barondes, S. H. , and Cohen H. D.. 1966. “Puromycin Effect on Successive Phases of Memory Storage.” Science 151, no. 3710: 594–595. 10.1126/science.151.3710.594. [DOI] [PubMed] [Google Scholar]
  22. Bateup, H. S. , Takasaki K. T., Saulnier J. L., Denefrio C. L., and Sabatini B. L.. 2011. “Loss of Tsc1 In Vivo Impairs Hippocampal mGluR‐LTD and Increases Excitatory Synaptic Function.” Journal of Neuroscience 31, no. 24: 8862–8869. 10.1523/jneurosci.1617-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Baxter, A. J. , Scott K. M., Ferrari A. J., Norman R. E., Vos T., and Whiteford H. A.. 2014. “Challenging the Myth of an “Epidemic” of Common Mental Disorders: Trends in the Global Prevalence of Anxiety and Depression Between 1990 and 2010.” Depression and Anxiety 31, no. 6: 506–516. 10.1002/da.22230. [DOI] [PubMed] [Google Scholar]
  24. Bayer, K.‐U. , Löhler J., Schulman H., and Harbers K.. 1999. “Developmental Expression of the CaM Kinase II Isoforms: Ubiquitous γ‐and δ‐CaM Kinase II Are the Early Isoforms and Most Abundant in the Developing Nervous System.” Molecular Brain Research 70, no. 1: 147–154. 10.1016/s0169-328x(99)00131-x. [DOI] [PubMed] [Google Scholar]
  25. Beaumont, V. , Zhong N., Fletcher R., Froemke R. C., and Zucker R. S.. 2001. “Phosphorylation and Local Presynaptic Protein Synthesis in Calcium‐ and Calcineurin‐Dependent Induction of Crayfish Long‐Term Facilitation.” Neuron 32, no. 3: 489–501. 10.1016/s0896-6273(01)00483-4. [DOI] [PubMed] [Google Scholar]
  26. Bekinschtein, P. , Cammarota M., Igaz L. M., Bevilaqua L. R., Izquierdo I., and Medina J. H.. 2007. “Persistence of Long‐Term Memory Storage Requires a Late Protein Synthesis‐ and BDNF‐ Dependent Phase in the Hippocampus.” Neuron 53, no. 2: 261–277. 10.1016/j.neuron.2006.11.025. [DOI] [PubMed] [Google Scholar]
  27. Benthall, K. N. , Cording K. R., Agopyan‐Miu A., Wong C. D., Chen E. Y., and Bateup H. S.. 2021. “Loss of Tsc1 From Striatal Direct Pathway Neurons Impairs Endocannabinoid‐LTD and Enhances Motor Routine Learning.” Cell Reports 36, no. 6: 109511. 10.1016/j.celrep.2021.109511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bermudez, S. , Choi J.‐H., Vogel J. W., et al. 2024. “Translational Control of Microglial Inflammatory and Neurodegenerative Responses.” bioRxiv, 2024.2004.2006.587750. 10.1101/2024.04.06.587750. [DOI]
  29. Bhattacharya, A. , Kaphzan H., Alvarez‐Dieppa A. C., Murphy J. P., Pierre P., and Klann E.. 2012. “Genetic Removal of p70 S6 Kinase 1 Corrects Molecular, Synaptic, and Behavioral Phenotypes in Fragile X Syndrome Mice.” Neuron 76, no. 2: 325–337. 10.1016/j.neuron.2012.07.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Bidinosti, M. , Martineau Y., Frank F., and Sonenberg N.. 2010. “Repair of Isoaspartate Formation Modulates the Interaction of Deamidated 4E‐BP2 With mTORC1 in Brain.” Journal of Biological Chemistry 285, no. 25: 19402–19408. 10.1074/jbc.M110.120774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Bidinosti, M. , Ran I., Sanchez‐Carbente M. R., et al. 2010. “Postnatal Deamidation of 4E‐BP2 in Brain Enhances Its Association With Raptor and Alters Kinetics of Excitatory Synaptic Transmission.” Molecular Cell 37, no. 6: 797–808. 10.1016/j.molcel.2010.02.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Blanckenberg, J. , Ntsapi C., Carr J. A., and Bardien S.. 2014. “EIF4G1 R1205H and VPS35 D620N Mutations Are Rare in Parkinson's Disease From South Africa.” Neurobiology of Aging 35, no. 2: 445.e1–445.e3. 10.1016/j.neurobiolaging.2013.08.023. [DOI] [PubMed] [Google Scholar]
  33. Bliss, T. V. , and Gardner‐Medwin A. R.. 1973. “Long‐Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Unanaestetized Rabbit Following Stimulation of the Perforant Path.” Journal of Physiology 232, no. 2: 357–374. 10.1113/jphysiol.1973.sp010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Blundell, J. , Kouser M., and Powell C. M.. 2008. “Systemic Inhibition of Mammalian Target of Rapamycin Inhibits Fear Memory Reconsolidation.” Neurobiology of Learning and Memory 90, no. 1: 28–35. 10.1016/j.nlm.2007.12.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Böhm, R. , Imseng S., Jakob R. P., Hall M. N., Maier T., and Hiller S.. 2021. “The Dynamic Mechanism of 4E‐BP1 Recognition and Phosphorylation by mTORC1.” Molecular Cell 81, no. 11: 2403–2416. 10.1016/j.molcel.2021.03.031. [DOI] [PubMed] [Google Scholar]
  36. Bové, J. , Martínez‐Vicente M., and Vila M.. 2011. “Fighting Neurodegeneration With Rapamycin: Mechanistic Insights.” Nature Reviews Neuroscience 12, no. 8: 437–452. [DOI] [PubMed] [Google Scholar]
  37. Bramham, C. R. , Jensen K. B., and Proud C. G.. 2016. “Tuning Specific Translation in Cancer Metastasis and Synaptic Memory: Control at the MNK‐eIF4E Axis.” Trends in Biochemical Sciences 41, no. 10: 847–858. 10.1016/j.tibs.2016.07.008. [DOI] [PubMed] [Google Scholar]
  38. Briz, V. , and Baudry M.. 2014. “Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons Through Different Molecular Mechanisms.” Frontiers in Endocrinology 5: 22. 10.3389/fendo.2014.00022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Brown, E. J. , Albers M. W., Shin T. B., et al. 1994. “A Mammalian Protein Targeted by G1‐Arresting Rapamycin‐Receptor Complex.” Nature 369, no. 6483: 756–758. 10.1038/369756a0. [DOI] [PubMed] [Google Scholar]
  40. Brown, H. L. , Kaun K. R., and Edgar B. A.. 2012. “The Small GTPase Rheb Affects Central Brain Neuronal Morphology and Memory Formation in Drosophila.” PLoS One 7, no. 9: e44888. 10.1371/journal.pone.0044888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Buchert, R. , Burkhalter M. D., Huridou C., et al. 2025. “Bi‐Allelic KICS2 Mutations Impair KICSTOR Complex‐Mediated mTORC1 Regulation, Causing Intellectual Disability and Epilepsy.” American Journal of Human Genetics 112, no. 2: 374–393. 10.1016/j.ajhg.2024.12.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Burger, C. , Gorbatyuk O. S., Velardo M. J., et al. 2004. “Recombinant AAV Viral Vectors Pseudotyped With Viral Capsids From Serotypes 1, 2, and 5 Display Differential Efficiency and Cell Tropism After Delivery to Different Regions of the Central Nervous System.” Molecular Therapy 10, no. 2: 302–317. 10.1016/j.ymthe.2004.05.024. [DOI] [PubMed] [Google Scholar]
  43. Caccamo, A. , Branca C., Talboom J. S., et al. 2015. “Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer's Disease.” Journal of Neuroscience 35, no. 41: 14042–14056. 10.1523/jneurosci.2781-15.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Caccamo, A. , De Pinto V., Messina A., Branca C., and Oddo S.. 2014. “Genetic Reduction of Mammalian Target of Rapamycin Ameliorates Alzheimer's Disease‐Like Cognitive and Pathological Deficits by Restoring Hippocampal Gene Expression Signature.” Journal of Neuroscience 34, no. 23: 7988–7998. 10.1523/jneurosci.0777-14.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Caccamo, A. , Magrì A., Medina D. X., et al. 2013. “mTOR Regulates Tau Phosphorylation and Degradation: Implications for Alzheimer's Disease and Other Tauopathies.” Aging Cell 12, no. 3: 370–380. 10.1111/acel.12057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cameron, A. J. , Linch M. D., Saurin A. T., Escribano C., and Parker P. J.. 2011. “mTORC2 Targets AGC Kinases Through Sin1‐Dependent Recruitment.” Biochemical Journal 439, no. 2: 287–297. 10.1042/bj20110678. [DOI] [PubMed] [Google Scholar]
  47. Carriere, A. , Romeo Y., Acosta‐Jaquez H. A., et al. 2011. “ERK1/2 Phosphorylate Raptor to Promote Ras‐Dependent Activation of mTOR Complex 1 (mTORC1).” Journal of Biological Chemistry 286, no. 1: 567–577. 10.1074/jbc.M110.159046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Carson, R. P. , Van Nielen D. L., Winzenburger P. A., and Ess K. C.. 2012. “Neuronal and Glia Abnormalities in Tsc1‐Deficient Forebrain and Partial Rescue by Rapamycin.” Neurobiology of Disease 45, no. 1: 369–380. 10.1016/j.nbd.2011.08.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Casadio, A. , Martin K. C., Giustetto M., et al. 1999. “A Transient, Neuron‐Wide Form of CREB‐Mediated Long‐Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis.” Cell 99, no. 2: 221–237. 10.1016/s0092-8674(00)81653-0. [DOI] [PubMed] [Google Scholar]
  50. Chartier‐Harlin, M.‐C. , Dachsel J. C., Vilariño‐Güell C., et al. 2011. “Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease.” American Journal of Human Genetics 89, no. 3: 398–406. 10.1016/j.ajhg.2011.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Chauvin, C. , Koka V., Nouschi A., et al. 2013. “Ribosomal Protein S6 Kinase Activity Controls the Ribosome Biogenesis Transcriptional Program.” Oncogene 33, no. 4: 474–483. 10.1038/onc.2012.606. [DOI] [PubMed] [Google Scholar]
  52. Chaves, T. , Török B., Fazekas C., et al. 2024. “The Role of the GABAergic Cells of the Median Raphe Region in Reinforcement‐Based Learning.” Scientific Reports 14, no. 1: 1175. 10.1038/s41598-024-51743-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Chen, L. , Saito R., Noda‐Narita S., Kassai H., and Aiba A.. 2024. “Hyperactive mTORC1 in Striatum Dysregulates Dopamine Receptor Expression and Odor Preference Behavior.” Frontiers in Neuroscience 18: 1461178. 10.3389/fnins.2024.1461178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Choe, H. K. , and Cho J.. 2020. “Comprehensive Genome‐Wide Approaches to Activity‐Dependent Translational Control in Neurons.” International Journal of Molecular Sciences 21, no. 5: 1592. 10.3390/ijms21051592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Choi, D. I. , and Kaang B. K.. 2022. “Interrogating Structural Plasticity Among Synaptic Engrams.” Current Opinion in Neurobiology 75: 102552. 10.1016/j.conb.2022.102552. [DOI] [PubMed] [Google Scholar]
  56. Choi, J.‐H. , Marsal‐García L., Peraldi E., et al. 2024. “Early Metformin Treatment: An Effective Approach for Targeting Fragile X Syndrome Pathophysiology.” Proceedings of the National Academy of Sciences of the United States of America 121, no. 31: e2407546121. 10.1073/pnas.2407546121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Choo, A. Y. , Yoon S. O., Kim S. G., Roux P. P., and Blenis J.. 2008. “Rapamycin Differentially Inhibits S6Ks and 4E‐BP1 to Mediate Cell‐Type‐Specific Repression of mRNA Translation.” Proceedings of the National Academy of Sciences of the United States of America 105, no. 45: 17414–17419. 10.1073/pnas.0809136105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Cloëtta, D. , Thomanetz V., Baranek C., et al. 2013. “Inactivation of mTORC1 in the Developing Brain Causes Microcephaly and Affects Gliogenesis.” Journal of Neuroscience 33, no. 18: 7799–7810. 10.1523/jneurosci.3294-12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Colina, R. , Costa‐Mattioli M., Dowling R. J., et al. 2008. “Translational Control of the Innate Immune Response Through IRF‐7.” Nature 452, no. 7185: 323–328. 10.1038/nature06730. [DOI] [PubMed] [Google Scholar]
  60. Costa‐Mattioli, M. , Sossin W. S., Klann E., and Sonenberg N.. 2009. “Translational Control of Long‐Lasting Synaptic Plasticity and Memory.” Neuron 61, no. 1: 10–26. 10.1016/j.neuron.2008.10.055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Cox, R. L. , Calderon de Anda F., Mangoubi T., and Yoshii A.. 2018. “Multiple Critical Periods for Rapamycin Treatment to Correct Structural Defects in Tsc‐1‐Suppressed Brain [Original Research].” Frontiers in Molecular Neuroscience 11: 409. 10.3389/fnmol.2018.00409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Crino, P. B. 2020. “MTORopathies: A Road Well‐Traveled.” Epilepsy Currents 20, no. 6_suppl: 64S–66S. 10.1177/1535759720959320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Darnell, J. C. , Jensen K. B., Jin P., Brown V., Warren S. T., and Darnell R. B.. 2001. “Fragile X Mental Retardation Protein Targets G Quartet mRNAs Important for Neuronal Function.” Cell 107, no. 4: 489–499. 10.1016/s0092-8674(01)00566-9. [DOI] [PubMed] [Google Scholar]
  64. Dastidar, S. G. , Pham M. T., Mitchell M. B., et al. 2020. “4E‐BP1 Protects Neurons From Misfolded Protein Stress and Parkinson's Disease Toxicity by Inducing the Mitochondrial Unfolded Protein Response.” Journal of Neuroscience 40, no. 45: 8734–8745. 10.1523/JNEUROSCI.0940-20.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Dawson, J. E. , Bah A., Zhang Z., et al. 2020. “Non‐Cooperative 4E‐BP2 Folding With Exchange Between eIF4E‐Binding and Binding‐Incompatible States Tunes Cap‐Dependent Translation Inhibition.” Nature Communications 11, no. 1: 3146. 10.1038/s41467-020-16783-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. De Gregorio, D. , Popic J., Enns J. P., et al. 2021. “Lysergic Acid Diethylamide (LSD) Promotes Social Behavior Through mTORC1 in the Excitatory Neurotransmission.” Proceedings of the National Academy of Sciences of the United States of America 118, no. 5: e2020705118. 10.1073/pnas.2020705118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. De Leonibus, E. , Lafenetre P., Oliverio A., and Mele A.. 2003. “Pharmacological Evidence of the Role of Dorsal Striatum in Spatial Memory Consolidation in Mice.” Behavioral Neuroscience 117, no. 4: 685. 10.1037/0735-7044.117.4.685. [DOI] [PubMed] [Google Scholar]
  68. Deli, A. , Schipany K., Rosner M., et al. 2012. “Blocking mTORC1 Activity by Rapamycin Leads to Impairment of Spatial Memory Retrieval but Not Acquisition in C57BL/6J Mice.” Behavioural Brain Research 229, no. 2: 320–324. 10.1016/j.bbr.2012.01.017. [DOI] [PubMed] [Google Scholar]
  69. Della Rocca, G. J. , Maudsley S., Daaka Y., Lefkowitz R. J., and Luttrell L. M.. 1999. “Pleiotropic Coupling of G Protein‐Coupled Receptors to the Mitogen‐Activated Protein Kinase Cascade. Role of Focal Adhesions and Receptor Tyrosine Kinases.” Journal of Biological Chemistry 274, no. 20: 13978–13984. 10.1074/jbc.274.20.13978. [DOI] [PubMed] [Google Scholar]
  70. Deng, Y. , Yang Q., Yang Y., et al. 2021. “Conditional Knockout of Tsc1 in RORγt‐Expressing Cells Induces Brain Damage and Early Death in Mice.” Journal of Neuroinflammation 18, no. 1: 107. 10.1186/s12974-021-02153-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Dennis, M. D. , Coleman C. S., Berg A., Jefferson L. S., and Kimball S. R.. 2014. “REDD1 Enhances Protein Phosphatase 2A‐Mediated Dephosphorylation of Akt to Repress mTORC1 Signaling.” Science Signaling 7, no. 335: ra68. 10.1126/scisignal.2005103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Dennis, M. D. , Jefferson L. S., and Kimball S. R.. 2012. “Role of p70S6K1‐Mediated Phosphorylation of eIF4B and PDCD4 Proteins in the Regulation of Protein Synthesis.” Journal of Biological Chemistry 287, no. 51: 42890–42899. 10.1074/jbc.M112.404822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. DeYoung, M. P. , Horak P., Sofer A., Sgroi D., and Ellisen L. W.. 2008. “Hypoxia Regulates TSC1/2‐mTOR Signaling and Tumor Suppression Through REDD1‐Mediated 14‐3‐3 Shuttling.” Genes and Development 22, no. 2: 239–251. 10.1101/gad.1617608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Ding, Y. , Liu H., Cen M., Tao Y., Lai C., and Tang Z.. 2021. “Rapamycin Ameliorates Cognitive Impairments and Alzheimer's Disease‐Like Pathology With Restoring Mitochondrial Abnormality in the Hippocampus of Streptozotocin‐Induced Diabetic Mice.” Neurochemical Research 46: 265–275. [DOI] [PubMed] [Google Scholar]
  75. Donocoff, R. S. , Teteloshvili N., Chung H., Shoulson R., and Creusot R. J.. 2020. “Optimization of Tamoxifen‐Induced Cre Activity and Its Effect on Immune Cell Populations.” Scientific Reports 10, no. 1: 15244. 10.1038/s41598-020-72179-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Doroudgar, S. , Hofmann C., Boileau E., et al. 2019. “Monitoring Cell‐Type‐Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress.” Circulation Research 125, no. 4: 431–448. 10.1161/circresaha.119.314817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Dowling, R. J. , Topisirovic I., Alain T., et al. 2010. “mTORC1‐Mediated Cell Proliferation, but Not Cell Growth, Controlled by the 4E‐BPs.” Science 328, no. 5982: 1172–1176. 10.1126/science.1187532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Dufner, A. , and Thomas G.. 1999. “Ribosomal S6 Kinase Signaling and the Control of Translation.” Experimental Cell Research 253, no. 1: 100–109. 10.1006/excr.1999.4683. [DOI] [PubMed] [Google Scholar]
  79. Dupuy, S. T. , and Houser C. R.. 1996. “Prominent Expression of Two Forms of Glutamate Decarboxylase in the Embryonic and Early Postnatal Rat Hippocampal Formation.” Journal of Neuroscience 16, no. 21: 6919–6932. 10.1523/jneurosci.16-21-06919.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Ehninger, D. , Han S., Shilyansky C., et al. 2008. “Reversal of Learning Deficits in a Tsc2+/− Mouse Model of Tuberous Sclerosis.” Nature Medicine 14, no. 8: 843–848. 10.1038/nm1788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Encinas, J. M. , Michurina T. V., Peunova N., et al. 2011. “Division‐Coupled Astrocytic Differentiation and Age‐Related Depletion of Neural Stem Cells in the Adult Hippocampus.” Cell Stem Cell 8, no. 5: 566–579. 10.1016/j.stem.2011.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Eom, T. , Muslimov I. A., Tsokas P., et al. 2014. “Neuronal BC RNAs Cooperate With eIF4B to Mediate Activity‐Dependent Translational Control.” Journal of Cell Biology 207, no. 2: 237–252. 10.1083/jcb.201401005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Eze, U. C. , Bhaduri A., Haeussler M., Nowakowski T. J., and Kriegstein A. R.. 2021. “Single‐Cell Atlas of Early Human Brain Development Highlights Heterogeneity of Human Neuroepithelial Cells and Early Radial Glia.” Nature Neuroscience 24, no. 4: 584–594. 10.1038/s41593-020-00794-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Fadden, P. , Haystead T. A. J., and Lawrence J. C.. 1997. “Identification of Phosphorylation Sites in the Translational Regulator, PHAS‐I, That Are Controlled by Insulin and Rapamycin in Rat Adipocytes*.” Journal of Biological Chemistry 272, no. 15: 10240–10247. 10.1074/jbc.272.15.10240. [DOI] [PubMed] [Google Scholar]
  85. Feldman, M. E. , Apsel B., Uotila A., et al. 2009. “Active‐Site Inhibitors of mTOR Target Rapamycin‐Resistant Outputs of mTORC1 and mTORC2.” PLoS Biology 7, no. 2: e1000038. 10.1371/journal.pbio.1000038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Ferrari, S. , Bandi H. R., Hofsteenge J., Bussian B. M., and Thomas G.. 1991. “Mitogen‐Activated 70K S6 Kinase. Identification of in Vitro 40 S Ribosomal S6 Phosphorylation Sites.” Journal of Biological Chemistry 266, no. 33: 22770–22775. [PubMed] [Google Scholar]
  87. Flexner, J. B. , Flexner L. B., and Stellar E.. 1963. “Memory in Mice as Affected by Intracerebral Puromycin.” Science 141, no. 3575: 57–59. 10.1126/science.141.3575.57. [DOI] [PubMed] [Google Scholar]
  88. Flexner, L. B. , Flexner J. B., and Stellar E.. 1965. “Memory and Cerebral Protein Synthesis in Mice as Affected by Graded Amounts of Puromycin.” Experimental Neurology 13, no. 3: 264–272. 10.1016/0014-4886(65)90114-7. [DOI] [PubMed] [Google Scholar]
  89. Fonseca, B. D. , Smith E. M., Lee V. H., MacKintosh C., and Proud C. G.. 2007. “PRAS40 Is a Target for Mammalian Target of Rapamycin Complex 1 and Is Required for Signaling Downstream of This Complex.” Journal of Biological Chemistry 282, no. 34: 24514–24524. 10.1074/jbc.M704406200. [DOI] [PubMed] [Google Scholar]
  90. Fonseca, B. D. , Zakaria C., Jia J. J., et al. 2015. “La‐Related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1).” Journal of Biological Chemistry 290, no. 26: 15996–16020. 10.1074/jbc.M114.621730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Frey, S. , and Frey J. U.. 2008. “Chapter 7 ‘Synaptic Tagging’ and ‘Cross‐Tagging’ and Related Associative Reinforcement Processes of Functional Plasticity as the Cellular Basis for Memory Formation.” Essence of Memory: 117–143. 10.1016/s0079-6123(07)00007-6. [DOI] [PubMed] [Google Scholar]
  92. Fu, C. , Cawthon B., Clinkscales W., Bruce A., Winzenburger P., and Ess K. C.. 2012. “GABAergic Interneuron Development and Function Is Modulated by the Tsc1 Gene.” Cerebral Cortex 22, no. 9: 2111–2119. 10.1093/cercor/bhr300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Fu, J. , Wang H., Gao J., et al. 2017. “Rapamycin Effectively Impedes Melamine‐Induced Impairments of Cognition and Synaptic Plasticity in Wistar Rats.” Molecular Neurobiology 54: 819–832. 10.1007/s12035-016-9687-7. [DOI] [PubMed] [Google Scholar]
  94. Gafford, G. M. , Parsons R. G., and Helmstetter F.. 2011. “Consolidation and Reconsolidation of Contextual Fear Memory Requires Mammalian Target of Rapamycin‐Dependent Translation in the Dorsal Hippocampus.” Neuroscience 182: 98–104. 10.1016/j.neuroscience.2011.03.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Gantois, I. , Khoutorsky A., Popic J., et al. 2017. “Metformin Ameliorates Core Deficits in a Mouse Model of Fragile X Syndrome.” Nature Medicine 23, no. 6: 674–677. 10.1146/annurev-med-081117-041238. [DOI] [PubMed] [Google Scholar]
  96. Gerfen, C. R. , and Surmeier D. J.. 2011. “Modulation of Striatal Projection Systems by Dopamine.” Annual Review of Neuroscience 34: 441–466. 10.1146/annurev-neuro-061010-113641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Ghiglieri, V. , Sgobio C., Costa C., Picconi B., and Calabresi P.. 2011. “Striatum–Hippocampus Balance: From Physiological Behavior to Interneuronal Pathology.” Progress in Neurobiology 94, no. 2: 102–114. 10.1016/j.pneurobio.2011.04.005. [DOI] [PubMed] [Google Scholar]
  98. Gildish, I. , Manor D., David O., et al. 2012. “Impaired Associative Taste Learning and Abnormal Brain Activation in Kinase‐Defective eEF2K Mice.” Learning and Memory 19, no. 3: 116–125. 10.1101/lm.023937.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Gindina, S. , Botsford B., Cowansage K., et al. 2021. “Upregulation of eIF4E, but Not Other Translation Initiation Factors, in Dendritic Spines During Memory Formation.” Journal of Comparative Neurology 529, no. 11: 3112–3126. 10.1002/cne.25158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Gingras, A. C. , Gygi S. P., Raught B., et al. 1999. “Regulation of 4E‐BP1 Phosphorylation: A Novel Two‐Step Mechanism.” Genes and Development 13, no. 11: 1422–1437. 10.1101/gad.13.11.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Gingras, A. C. , Raught B., Gygi S. P., et al. 2001. “Hierarchical Phosphorylation of the Translation Inhibitor 4E‐BP1.” Genes and Development 15, no. 21: 2852–2864. 10.1101/gad.912401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Gkogkas, C. , Sonenberg N., and Costa‐Mattioli M.. 2010. “Translational Control Mechanisms in Long‐Lasting Synaptic Plasticity and Memory.” Journal of Biological Chemistry 285, no. 42: 31913–31917. 10.1074/jbc.R110.154476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Gkogkas, C. G. , Khoutorsky A., Ran I., et al. 2013. “Autism‐Related Deficits via Dysregulated eIF4E‐Dependent Translational Control.” Nature 493, no. 7432: 371–377. 10.1038/nature11628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Glover, E. M. , Ressler K. J., and Davis M.. 2010. “Differing Effects of Systemically Administered Rapamycin on Consolidation and Reconsolidation of Context vs. Cued Fear Memories.” Learning and Memory 17, no. 11: 577–581. 10.1101/lm.1908310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Gong, R. , Park C. S., Abbassi N. R., and Tang S.‐J.. 2006. “Roles of Glutamate Receptors and the Mammalian Target of Rapamycin (mTOR) Signaling Pathway in Activity‐Dependent Dendritic Protein Synthesis in Hippocampal Neurons.” Journal of Biological Chemistry 281, no. 27: 18802–18815. 10.1074/jbc.M512524200. [DOI] [PubMed] [Google Scholar]
  106. Gouveia Roque, C. , Chung K. M., McCurdy E. P., et al. 2023. “CREB3L2‐ATF4 Heterodimerization Defines a Transcriptional Hub of Alzheimer's Disease Gene Expression Linked to Neuropathology.” Science Advances 9, no. 9: eadd2671. 10.1126/sciadv.add2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Graber, T. E. , McCamphill P. K., and Sossin W. S.. 2013. “A Recollection of mTOR Signaling in Learning and Memory.” Learning and Memory 20, no. 10: 518–530. 10.1101/lm.027664.112. [DOI] [PubMed] [Google Scholar]
  108. Gray, J. M. , and Spiegel I.. 2019. “Cell‐Type‐Specific Programs for Activity‐Regulated Gene Expression.” Current Opinion in Neurobiology 56: 33–39. 10.1016/j.conb.2018.11.001. [DOI] [PubMed] [Google Scholar]
  109. Grolleau, A. , Bowman J., Pradet‐Balade B., et al. 2002. “Global and Specific Translational Control by Rapamycin in T Cells Uncovered by Microarrays and Proteomics.” Journal of Biological Chemistry 277, no. 25: 22175–22184. 10.1074/jbc.M202014200. [DOI] [PubMed] [Google Scholar]
  110. Guertin, D. A. , Stevens D. M., Thoreen C. C., et al. 2006. “Ablation in Mice of the mTORC Components Raptor, Rictor, or mLST8 Reveals That mTORC2 Is Required for Signaling to Akt‐FOXO and PKCalpha, but Not S6K1.” Developmental Cell 11, no. 6: 859–871. 10.1016/j.devcel.2006.10.007. [DOI] [PubMed] [Google Scholar]
  111. Gulisano, M. , Broccoli V., Pardini C., and Boncinelli E.. 1996. “Emx1 and Emx2 Show Different Patterns of Expression During Proliferation and Differentiation of the Developing Cerebral Cortex in the Mouse.” European Journal of Neuroscience 8, no. 5: 1037–1050. 10.1111/j.1460-9568.1996.tb01590.x. [DOI] [PubMed] [Google Scholar]
  112. Gwinn, D. M. , Shackelford D. B., Egan D. F., et al. 2008. “AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint.” Molecular Cell 30, no. 2: 214–226. 10.1016/j.molcel.2008.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Hagerman, R. J. , Berry‐Kravis E., Hazlett H. C., et al. 2017. “Fragile X Syndrome.” Nature Reviews Disease Primers 3, no. 1: 17065. 10.1016/s0960-9822(01)00422-5. [DOI] [PubMed] [Google Scholar]
  114. Hara, K. , Maruki Y., Long X., et al. 2002. “Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action.” Cell 110, no. 2: 177–189. 10.1016/s0092-8674(02)00833-4. [DOI] [PubMed] [Google Scholar]
  115. Hay, N. , and Sonenberg N.. 2004. “Upstream and Downstream of mTOR.” Genes and Development 18, no. 16: 1926–1945. 10.1101/gad.1212704. [DOI] [PubMed] [Google Scholar]
  116. Heesom, K. J. , Gampel A., Mellor H., and Denton R. M.. 2001. “Cell Cycle‐Dependent Phosphorylation of the Translational Repressor eIF‐4E Binding Protein‐1 (4E‐BP1).” Current Biology 11, no. 17: 1374–1379. 10.1016/s0960-9822(01)00422-5. [DOI] [PubMed] [Google Scholar]
  117. Heiman, M. , Schaefer A., Gong S., et al. 2008. “A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types.” Cell 135, no. 4: 738–748. 10.1016/j.cell.2008.10.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Heitman, J. , Movva N. R., and Hall M. N.. 1991. “Targets for Cell Cycle Arrest by the Immunosuppressant Rapamycin in Yeast.” Science 253, no. 5022: 905–909. 10.1126/science.1715094. [DOI] [PubMed] [Google Scholar]
  119. Hershey, J. W. B. , Sonenberg N., and Mathews M. B.. 2018. “Principles of Translational Control.” Cold Spring Harbor Perspectives in Biology 11, no. 9: a032607. 10.1101/cshperspect.a032607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Hochstoeger, T. , and Chao J. A.. 2024. “Towards a Molecular Understanding of the 5'TOP Motif in Regulating Translation of Ribosomal mRNAs.” Seminars in Cell and Developmental Biology 154, no. Pt B: 99–104. 10.1016/j.semcdb.2023.06.001. [DOI] [PubMed] [Google Scholar]
  121. Hochstoeger, T. , Papasaikas P., Piskadlo E., and Chao J. A.. 2024. “Distinct Roles of LARP1 and 4EBP1/2 in Regulating Translation and Stability of 5'TOP mRNAs.” Science Advances 10, no. 7: eadi7830. 10.1126/sciadv.adi7830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hoeffer, C. A. , Cowansage K. K., Arnold E. C., et al. 2011. “Inhibition of the Interactions Between Eukaryotic Initiation Factors 4E and 4G Impairs Long‐Term Associative Memory Consolidation but Not Reconsolidation.” Proceedings of the National Academy of Sciences of the United States of America 108, no. 8: 3383–3388. 10.1073/pnas.1013063108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hoeffer, C. A. , and Klann E.. 2010. “mTOR Signaling: At the Crossroads of Plasticity, Memory and Disease.” Trends in Neurosciences 33, no. 2: 67–75. 10.1016/j.tins.2009.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Hoeffer, C. A. , Tang W., Wong H., et al. 2008. “Removal of FKBP12 Enhances mTOR‐Raptor Interactions, LTP, Memory, and Perseverative/Repetitive Behavior.” Neuron 60, no. 5: 832–845. 10.1016/j.neuron.2008.09.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Holz, M. K. , and Blenis J.. 2005. “Identification of S6 Kinase 1 as a Novel Mammalian Target of Rapamycin (mTOR)‐Phosphorylating Kinase.” Journal of Biological Chemistry 280, no. 28: 26089–26093. 10.1074/jbc.M504045200. [DOI] [PubMed] [Google Scholar]
  126. Honoré, E. , and Lacaille J. C.. 2022. “Object Location Learning in Mice Requires Hippocampal Somatostatin Interneuron Activity and Is Facilitated by mTORC1‐Mediated Long‐Term Potentiation of Their Excitatory Synapses.” Molecular Brain 15, no. 1: 101. 10.1186/s13041-022-00988-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Hooshmandi, M. , Truong V. T., Fields E., et al. 2021. “4E‐BP2‐Dependent Translation in Cerebellar Purkinje Cells Controls Spatial Memory but Not Autism‐Like Behaviors.” Cell Reports 35, no. 4: 109036. 10.1016/j.celrep.2021.109036. [DOI] [PubMed] [Google Scholar]
  128. Hooshmandi, M. , Wong C., and Khoutorsky A.. 2020. “Dysregulation of Translational Control Signaling in Autism Spectrum Disorders.” Cellular Signalling 75: 109746. [DOI] [PubMed] [Google Scholar]
  129. Ho‐Tieng, D. , Sharma V., Sonenberg N., Gkogkas C. G., and Khoutorsky A.. 2025. “The Integrated Stress Response in the Brain: Cell Type‐Specific Functions in Health and Neurological Disorders.” Trends in Neurosciences 48, no. 10: 808–821. 10.1016/j.tins.2025.08.002. [DOI] [PubMed] [Google Scholar]
  130. Hou, L. , and Klann E.. 2004. “Activation of the Phosphoinositide 3‐Kinase‐Akt‐Mammalian Target of Rapamycin Signaling Pathway Is Required for Metabotropic Glutamate Receptor‐Dependent Long‐Term Depression.” Journal of Neuroscience 24, no. 28: 6352–6361. 10.1523/JNEUROSCI.0995-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Howard, D. B. , Powers K., Wang Y., and Harvey B. K.. 2008. “Tropism and Toxicity of Adeno‐Associated Viral Vector Serotypes 1, 2, 5, 6, 7, 8, and 9 in Rat Neurons and Glia in Vitro.” Virology 372, no. 1: 24–34. 10.1016/j.virol.2007.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Hsieh, A. C. , Costa M., Zollo O., et al. 2010. “Genetic Dissection of the Oncogenic mTOR Pathway Reveals Druggable Addiction to Translational Control via 4EBP‐eIF4E.” Cancer Cell 17, no. 3: 249–261. 10.1016/j.ccr.2010.01.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Hsieh, A. C. , Liu Y., Edlind M. P., et al. 2012. “The Translational Landscape of mTOR Signalling Steers Cancer Initiation and Metastasis.” Nature 485, no. 7396: 55–61. 10.1038/nature10912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Huang, Z. , Mahmood N., Lacaille J. C., Wiebe S., and Sonenberg N.. 2025. “Hippocampal Inhibitory Interneuron‐Specific DREADDs Treatment Alters mTORC1‐4E‐BP Signaling and Impairs Memory Formation.” Journal of Neurochemistry 169, no. 3: e70048. 10.1111/jnc.70048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Huang, Z. , Mahmood N., Psycharis K., et al. 2025. “4E‐BP2‐Dependent Translational Control in GABAergic Interneurons is Required for Long‐Term Memory.” bioRxiv, 2025.2010.2014.682450. 10.1101/2025.10.14.682450. [DOI]
  136. Huang, Z. , Wiebe S., Nagpal A., et al. 2024. “Dysregulating mTORC1‐4E‐BP2 Signaling in GABAergic Interneurons Impairs Hippocampus‐Dependent Learning and Memory.” Learning and Memory 31, no. 10–11: a054018. 10.1101/lm.054018.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Huber, K. , and Ernsberger U.. 2006. “Cholinergic Differentiation Occurs Early in Mouse Sympathetic Neurons and Requires Phox2b.” Gene Expression 13, no. 2: 133–139. 10.3727/000000006783991854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Huber, K. M. , Kayser M. S., and Bear M. F.. 2000. “Role for Rapid Dendritic Protein Synthesis in Hippocampal mGluR‐Dependent Long‐Term Depression.” Science 288, no. 5469: 1254–1257. 10.1126/science.288.5469.1254. [DOI] [PubMed] [Google Scholar]
  139. Huber, K. M. , Roder J. C., and Bear M. F.. 2001. “Chemical Induction of mGluR5‐ and Protein Synthesis–Dependent Long‐Term Depression in Hippocampal Area CA1.” Journal of Neurophysiology 86, no. 1: 321–325. 10.1152/jn.2001.86.1.321. [DOI] [PubMed] [Google Scholar]
  140. Huynh, T. N. , Santini E., and Klann E.. 2014. “Requirement of Mammalian Target of Rapamycin Complex 1 Downstream Effectors in Cued Fear Memory Reconsolidation and Its Persistence.” Journal of Neuroscience 34, no. 27: 9034–9039. 10.1523/jneurosci.0878-14.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Ilchuk, L. A. , Stavskaya N. I., Varlamova E. A., et al. 2022. “Limitations of Tamoxifen Application for In Vivo Genome Editing Using Cre/ER(T2) System.” International Journal of Molecular Sciences 23, no. 22: 14077. 10.3390/ijms232214077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Im, H. I. , Nakajima A., Gong B., et al. 2009. “Post‐Training Dephosphorylation of eEF‐2 Promotes Protein Synthesis for Memory Consolidation.” PLoS One 4, no. 10: e7424. 10.1371/journal.pone.0007424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Imai, H. , Utsumi D., Torihara H., Takahashi K., Kuroyanagi H., and Yamashita A.. 2023. “Simultaneous Measurement of Nascent Transcriptome and Translatome Using 4‐Thiouridine Metabolic RNA Labeling and Translating Ribosome Affinity Purification.” Nucleic Acids Research 51, no. 14: e76. 10.1093/nar/gkad545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Indra, A. K. , Warot X., Brocard J., et al. 1999. “Temporally‐Controlled Site‐Specific Mutagenesis in the Basal Layer of the Epidermis: Comparison of the Recombinase Activity of the Tamoxifen‐Inducible Cre‐ER(T) and Cre‐ER(T2) Recombinases.” Nucleic Acids Research 27, no. 22: 4324–4327. 10.1093/nar/27.22.4324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Ingolia, N. T. 2016. “Ribosome Footprint Profiling of Translation Throughout the Genome.” Cell 165, no. 1: 22–33. 10.1016/j.cell.2016.02.066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Inoki, K. , Ouyang H., Zhu T., et al. 2006. “TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth.” Cell 126, no. 5: 955–968. 10.1016/j.cell.2006.06.055. [DOI] [PubMed] [Google Scholar]
  147. Inoki, K. , Zhu T., and Guan K.‐L.. 2003. “TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival.” Cell 115, no. 5: 577–590. 10.1016/S0092-8674(03)00929-2. [DOI] [PubMed] [Google Scholar]
  148. Ittner, L. M. , and Götz J.. 2011. “Amyloid‐β and Tau—A Toxic Pas de Deux in Alzheimer's Disease.” Nature Reviews Neuroscience 12, no. 2: 67–72. 10.1038/nrn2967. [DOI] [PubMed] [Google Scholar]
  149. Jacinto, E. , Loewith R., Schmidt A., et al. 2004. “Mammalian TOR Complex 2 Controls the Actin Cytoskeleton and Is Rapamycin Insensitive.” Nature Cell Biology 6, no. 11: 1122–1128. 10.1038/ncb1183. [DOI] [PubMed] [Google Scholar]
  150. Jeffries, M. A. , McLane L. E., Khandker L., et al. 2021. “mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model.” Journal of Neuroscience 41, no. 40: 8321–8337. 10.1523/JNEUROSCI.1377-20.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Jobim, P. F. , Pedroso T. R., Christoff R. R., et al. 2012. “Inhibition of mTOR by Rapamycin in the Amygdala or Hippocampus Impairs Formation and Reconsolidation of Inhibitory Avoidance Memory.” Neurobiology of Learning and Memory 97, no. 1: 105–112. 10.1016/j.nlm.2011.10.002. [DOI] [PubMed] [Google Scholar]
  152. Juntawong, P. , Girke T., Bazin J., and Bailey‐Serres J.. 2014. “Translational Dynamics Revealed by Genome‐Wide Profiling of Ribosome Footprints in Arabidopsis.” Proceedings of the National Academy of Sciences of the United States of America 111, no. 1: E203–E212. 10.1073/pnas.1317811111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Kandel, E. R. 2001. “The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses.” Science 294, no. 5544: 1030–1038. 10.1126/science.1067020. [DOI] [PubMed] [Google Scholar]
  154. Kang, H. , and Schuman E. M.. 1996. “A Requirement for Local Protein Synthesis in Neurotrophin‐Induced Hippocampal Synaptic Plasticity.” Science 273, no. 5280: 1402–1406. 10.1126/science.273.5280.1402. [DOI] [PubMed] [Google Scholar]
  155. Karalis, V. , Caval‐Holme F., and Bateup H. S.. 2022. “Raptor Downregulation Rescues Neuronal Phenotypes in Mouse Models of Tuberous Sclerosis Complex.” Nature Communications 13, no. 1: 4665. 10.1038/s41467-022-31961-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Kashii, H. , Kasai S., Sato A., et al. 2023. “Tsc2 Mutation Rather Than Tsc1 Mutation Dominantly Causes a Social Deficit in a Mouse Model of Tuberous Sclerosis Complex.” Human Genomics 17, no. 1: 4. 10.1186/s40246-023-00450-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Kassai, H. , Sugaya Y., Noda S., et al. 2014. “Selective Activation of mTORC1 Signaling Recapitulates Microcephaly, Tuberous Sclerosis, and Neurodegenerative Diseases.” Cell Reports 7, no. 5: 1626–1639. 10.1016/j.celrep.2014.04.048. [DOI] [PubMed] [Google Scholar]
  158. Kelleher, R. J., 3rd , Govindarajan A., and Tonegawa S.. 2004. “Translational Regulatory Mechanisms in Persistent Forms of Synaptic Plasticity.” Neuron 44, no. 1: 59–73. 10.1016/j.neuron.2004.09.013. [DOI] [PubMed] [Google Scholar]
  159. Khan, A. , Pepio A. M., and Sossin W. S.. 2001. “Serotonin Activates S6 Kinase in a Rapamycin‐Sensitive Manner in Aplysia Synaptosomes.” Journal of Neuroscience 21, no. 2: 382–391. 10.1523/jneurosci.21-02-00382.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Khan, M. R. , Yin X., Kang S.‐U., et al. 2023. “Enhanced mTORC1 Signaling and Protein Synthesis in Pathologic α‐Synuclein Cellular and Animal Models of Parkinson's Disease.” Science Translational Medicine 15, no. 724: eadd0499. 10.1126/scitranslmed.add0499. [DOI] [PubMed] [Google Scholar]
  161. Khlaifia, A. , Honoré E., Artinian J., Laplante I., and Lacaille J. C.. 2022. “mTORC1 Function in Hippocampal Parvalbumin Interneurons: Regulation of Firing and Long‐Term Potentiation of Intrinsic Excitability but Not Long‐Term Contextual Fear Memory and Context Discrimination.” Molecular Brain 15, no. 1: 56. 10.1186/s13041-022-00941-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Kilfeather, P. , Khoo J. H., Wagner K., et al. 2024. “Single‐Cell Spatial Transcriptomic and Translatomic Profiling of Dopaminergic Neurons in Health, Aging, and Disease.” Cell Reports 43, no. 3: 113784. 10.1016/j.celrep.2024.113784. [DOI] [PubMed] [Google Scholar]
  163. Kim, D. H. , Sarbassov D. D., Ali S. M., et al. 2002. “mTOR Interacts With Raptor to Form a Nutrient‐Sensitive Complex That Signals to the Cell Growth Machinery.” Cell 110, no. 2: 163–175. 10.1016/s0092-8674(02)00808-5. [DOI] [PubMed] [Google Scholar]
  164. Kim, D. H. , Sarbassov D. D., Ali S. M., et al. 2003. “GbetaL, a Positive Regulator of the Rapamycin‐Sensitive Pathway Required for the Nutrient‐Sensitive Interaction Between Raptor and mTOR.” Molecular Cell 11, no. 4: 895–904. 10.1016/s1097-2765(03)00114-x. [DOI] [PubMed] [Google Scholar]
  165. Kim, J.‐Y. , Kwon Y.‐G., and Kim Y.‐M.. 2023. “The Stress‐Responsive Protein REDD1 and Its Pathophysiological Functions.” Experimental and Molecular Medicine 55, no. 9: 1933–1944. 10.1038/s12276-023-01056-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Kimura, N. , Tokunaga C., Dalal S., et al. 2003. “A Possible Linkage Between AMP‐Activated Protein Kinase (AMPK) and Mammalian Target of Rapamycin (mTOR) Signalling Pathway.” Genes to Cells 8, no. 1: 65–79. 10.1046/j.1365-2443.2003.00615.x. [DOI] [PubMed] [Google Scholar]
  167. Klann, E. , and Sweatt J. D.. 2008. “Altered Protein Synthesis Is a Trigger for Long‐Term Memory Formation.” Neurobiology of Learning and Memory 89, no. 3: 247–259. 10.1016/j.nlm.2007.08.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Kobayashi, T. , Minowa O., Sugitani Y., et al. 2001. “A Germ‐Line Tsc1 Mutation Causes Tumor Development and Embryonic Lethality That Are Similar, but Not Identical to, Those Caused by Tsc2 Mutation in Mice.” Proceedings of the National Academy of Sciences of the United States of America 98, no. 15: 8762–8767. 10.1073/pnas.151033798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Koehl, M. , Ladevèze E., Catania C., Cota D., and Abrous D. N.. 2021. “Inhibition of mTOR Signaling by Genetic Removal of p70 S6 Kinase 1 Increases Anxiety‐Like Behavior in Mice.” Translational Psychiatry 11, no. 1: 165. 10.1038/s41398-020-01187-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Koromilas, A. E. , Lazaris‐Karatzas A., and Sonenberg N.. 1992. “mRNAs Containing Extensive Secondary Structure in Their 5′ Non‐Coding Region Translate Efficiently in Cells Overexpressing Initiation Factor eIF‐4E.” EMBO Journal 11, no. 11: 4153–4158. 10.1002/j.1460-2075.1992.tb05508.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Kouloulia, S. , Hallin E. I., Simbriger K., et al. 2019. “Raptor‐Mediated Proteasomal Degradation of Deamidated 4E‐BP2 Regulates Postnatal Neuronal Translation and NF‐κB Activity.” Cell Reports 29, no. 11: 3620–3635. 10.1016/j.celrep.2019.11.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Kumar, P. , Lim A., Hazirah S. N., et al. 2022. “Single‐Cell Transcriptomics and Surface Epitope Detection in Human Brain Epileptic Lesions Identifies Pro‐Inflammatory Signaling.” Nature Neuroscience 25, no. 7: 956–966. 10.1038/s41593-022-01095-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Kupfer, D. J. 2005. “The Pharmacological Management of Depression.” Dialogues in Clinical Neuroscience 7, no. 3: 191–205. 10.31887/DCNS.2005.7.3/dkupfer. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Lamming, D. W. , Ye L., Katajisto P., et al. 2012. “Rapamycin‐Induced Insulin Resistance Is Mediated by mTORC2 Loss and Uncoupled From Longevity.” Science 335, no. 6076: 1638–1643. 10.1126/science.1215135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Lawrence, J. C., Jr. , Fadden P., Haystead T. A., and Lin T. A.. 1997. “PHAS Proteins as Mediators of the Actions of Insulin, Growth Factors and cAMP on Protein Synthesis and Cell Proliferation.” Advances in Enzyme Regulation 37: 239–267. 10.1016/s0065-2571(96)00016-7. [DOI] [PubMed] [Google Scholar]
  176. Lesage, S. , Condroyer C., Klebe S., et al. 2012. “EIF4G1 in Familial Parkinson's Disease: Pathogenic Mutations or Rare Benign Variants?” Neurobiology of Aging 33, no. 9: 2233.e1–2233.e5. 10.1016/j.neurobiolaging.2012.05.006. [DOI] [PubMed] [Google Scholar]
  177. Lewis, V. , Rodrigue B., Arsenault E., et al. 2023. “Translational Control by Ketamine and Its Implications for Comorbid Cognitive Deficits in Depressive Disorders.” Journal of Neurochemistry 166, no. 1: 10–23. 10.1111/jnc.15652. [DOI] [PubMed] [Google Scholar]
  178. Li, N. , Lee B., Liu R.‐J., et al. 2010. “mTOR‐Dependent Synapse Formation Underlies the Rapid Antidepressant Effects of NMDA Antagonists.” Science 329, no. 5994: 959–964. 10.1126/science.1190287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Li, Q. , Liu Y., and Sun M.. 2017. “Autophagy and Alzheimer's Disease.” Cellular and Molecular Neurobiology 37: 377–388. 10.1007/s10571-016-0386-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Li, T. L. , Blair J. D., Yoo T., et al. 2025. “mTORC1 Activation Drives Astrocyte Reactivity in Cortical Tubers and Brain Organoid Models of TSC.” bioRxiv, 2025.2002. 2028.640914. 10.1101/2025.02.28.640914. [DOI]
  181. Lin, T. A. , Kong X., Haystead T. A., et al. 1994. “PHAS‐I as a Link Between Mitogen‐Activated Protein Kinase and Translation Initiation.” Science 266, no. 5185: 653–656. 10.1126/science.7939721. [DOI] [PubMed] [Google Scholar]
  182. Lin, X. , Parisiadou L., Sgobio C., et al. 2012. “Conditional Expression of Parkinson's Disease‐Related Mutant α‐Synuclein in the Midbrain Dopaminergic Neurons Causes Progressive Neurodegeneration and Degradation of Transcription Factor Nuclear Receptor Related 1.” Journal of Neuroscience 32, no. 27: 9248–9264. 10.1523/JNEUROSCI.1731-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Lister, K. C. , Wong C., Cai W., et al. 2025. “4E‐BP1–Dependent Translation in Microglia Controls Mechanical Hypersensitivity in Male and Female Mice.” Journal of Clinical Investigation 135, no. 11: e180190. 10.1172/JCI180190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Lister, K. C. , Wong C., Uttam S., et al. 2024. “Translational Control in the Spinal Cord Regulates Gene Expression and Pain Hypersensitivity in the Chronic Phase of Neuropathic Pain.” bioRxiv. 10.1101/2024.06.24.600539. [DOI]
  185. Liu, K. , Jin H., and Zhou B.. 2020. “Genetic Lineage Tracing With Multiple DNA Recombinases: A User's Guide for Conducting More Precise Cell Fate Mapping Studies.” Journal of Biological Chemistry 295, no. 19: 6413–6424. 10.1074/jbc.REV120.011631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Liu, R. , Yang J., Yao J., et al. 2022. “Optogenetic Control of RNA Function and Metabolism Using Engineered Light‐Switchable RNA‐Binding Proteins.” Nature Biotechnology 40, no. 5: 779–786. 10.1038/s41587-021-01112-1. [DOI] [PubMed] [Google Scholar]
  187. Liu, S. , Trupiano M. X., Simon J., Guo J., and Anton E. S.. 2021. “Chapter Three ‐ The Essential Role of Primary Cilia in Cerebral Cortical Development and Disorders.” In Current Topics in Developmental Biology, edited by Bashaw G. J., vol. 142, 99–146. Academic Press. 10.1016/bs.ctdb.2020.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Lloyd, A. F. , Martinez‐Muriana A., Davis E., et al. 2024. “Deep Proteomic Analysis of Microglia Reveals Fundamental Biological Differences Between Model Systems.” Cell Reports 43, no. 11: 114908. 10.1016/j.celrep.2024.114908. [DOI] [PubMed] [Google Scholar]
  189. Loewith, R. , Jacinto E., Wullschleger S., et al. 2002. “Two TOR Complexes, Only One of Which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control.” Molecular Cell 10, no. 3: 457–468. 10.1016/s1097-2765(02)00636-6. [DOI] [PubMed] [Google Scholar]
  190. Long, X. , Ortiz‐Vega S., Lin Y., and Avruch J.. 2005. “Rheb Binding to Mammalian Target of Rapamycin (mTOR) is Regulated by Amino Acid Sufficiency.” Journal of Biological Chemistry 280, no. 25: 23433–23436. 10.1074/jbc.C500169200. [DOI] [PubMed] [Google Scholar]
  191. Lu, M. , Wang J., Ives H. E., and Pearce D.. 2011. “mSIN1 Protein Mediates SGK1 Protein Interaction With mTORC2 Protein Complex and Is Required for Selective Activation of the Epithelial Sodium Channel.” Journal of Biological Chemistry 286, no. 35: 30647–30654. 10.1074/jbc.M111.257592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Luttrell, L. M. , Roudabush F. L., Choy E. W., et al. 2001. “Activation and Targeting of Extracellular Signal‐Regulated Kinases by Beta‐Arrestin Scaffolds.” Proceedings of the National Academy of Sciences of the United States of America 98, no. 5: 2449–2454. 10.1073/pnas.041604898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Ma, L. , Chen Z., Erdjument‐Bromage H., Tempst P., and Pandolfi P. P.. 2005. “Phosphorylation and Functional Inactivation of TSC2 by Erk Implications for Tuberous Sclerosis and Cancer Pathogenesis.” Cell 121, no. 2: 179–193. 10.1016/j.cell.2005.02.031. [DOI] [PubMed] [Google Scholar]
  194. Ma, T. , Hoeffer C. A., Capetillo‐Zarate E., et al. 2010. “Dysregulation of the mTOR Pathway Mediates Impairment of Synaptic Plasticity in a Mouse Model of Alzheimer's Disease.” PLoS One 5, no. 9: e12845. 10.1371/journal.pone.0012845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Ma, T. , Tzavaras N., Tsokas P., Landau E. M., and Blitzer R. D.. 2011. “Synaptic Stimulation of mTOR Is Mediated by Wnt Signaling and Regulation of Glycogen Synthetase Kinase‐3.” Journal of Neuroscience 31, no. 48: 17537–17546. 10.1523/jneurosci.4761-11.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Mac Callum, P. E. , Hebert M., Adamec R. E., and Blundell J.. 2014. “Systemic Inhibition of mTOR Kinase via Rapamycin Disrupts Consolidation and Reconsolidation of Auditory Fear Memory.” Neurobiology of Learning and Memory 112: 176–185. 10.1016/j.nlm.2013.08.014. [DOI] [PubMed] [Google Scholar]
  197. Mader, S. , Lee H., Pause A., and Sonenberg N.. 1995. “The Translation Initiation Factor eIF‐4E Binds to a Common Motif Shared by the Translation Factor eIF‐4 Gamma and the Translational Repressors 4E‐Binding Proteins.” Molecular and Cellular Biology 15, no. 9: 4990–4997. 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Mahmood, N. , Choi J.‐H., Wu P. Y., et al. 2024. “The ISR Downstream Target ATF4 Represses Long‐Term Memory in a Cell Type–Specific Manner.” Proceedings of the National Academy of Sciences of the United States of America 121, no. 31: e2407472121. 10.1073/pnas.2407472121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Majumder, S. , Hirokawa K., Yang Z., et al. 2023. “Cell‐Type‐Specific Plasticity Shapes Neocortical Dynamics for Motor Learning.” bioRxiv. 10.1101/2023.08.09.552699. [DOI]
  200. Malik, R. , Pai E. L., Rubin A. N., et al. 2019. “Tsc1 Represses Parvalbumin Expression and Fast‐Spiking Properties in Somatostatin Lineage Cortical Interneurons.” Nature Communications 10, no. 1: 4994. 10.1038/s41467-019-12962-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Marcotrigiano, J. , Gingras A.‐C., Sonenberg N., and Burley S. K.. 1999. “Cap‐Dependent Translation Initiation in Eukaryotes Is Regulated by a Molecular Mimic of eIF4G.” Molecular Cell 3, no. 6: 707–716. 10.1016/S1097-2765(01)80003-4. [DOI] [PubMed] [Google Scholar]
  202. Matsuo, H. , Li H., McGuire A. M., et al. 1997. “Structure of Translation Factor eIF4E Bound to m7GDP and Interaction With 4E‐Binding Protein.” Nature Structural Biology 4, no. 9: 717–724. 10.1038/nsb0997-717. [DOI] [PubMed] [Google Scholar]
  203. Mendoza, M. C. , Er E. E., and Blenis J.. 2011. “The Ras‐ERK and PI3K‐mTOR Pathways: Cross‐Talk and Compensation.” Trends in Biochemical Sciences 36, no. 6: 320–328. 10.1016/j.tibs.2011.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Meyuhas, O. 2015. “Ribosomal Protein S6 Phosphorylation.” International Review of Cell and Molecular Biology: 41–73. 10.1016/bs.ircmb.2015.07.006. [DOI] [PubMed] [Google Scholar]
  205. Michon, F. X. , Laplante I., Bosson A., Robitaille R., and Lacaille J. C.. 2023. “mTORC1‐Mediated Acquisition of Reward‐Related Representations by Hippocampal Somatostatin Interneurons.” Molecular Brain 16, no. 1: 55. 10.1186/s13041-023-01042-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Michopoulou, S. , Prosser A., Kipps C., Dickson J., Guy M., and Teeling J.. 2022. “Biomarkers of Inflammation Increase With Tau and Neurodegeneration but Not With Amyloid‐β in a Heterogenous Clinical Cohort.” Journal of Alzheimer's Disease 89, no. 4: 1303–1314. 10.3233/jad-220523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Morris‐Rosendahl, D. J. , and Crocq M. A.. 2020. “Neurodevelopmental Disorders‐The History and Future of a Diagnostic Concept.” Dialogues in Clinical Neuroscience 22, no. 1: 65–72. 10.31887/DCNS.2020.22.1/macrocq. [DOI] [PMC free article] [PubMed] [Google Scholar]
  208. Mutvei, A. P. , Nagiec M. J., Hamann J. C., Kim S. G., Vincent C. T., and Blenis J.. 2020. “Rap1‐GTPases Control mTORC1 Activity by Coordinating Lysosome Organization With Amino Acid Availability.” Nature Communications 11, no. 1: 1416. 10.1038/s41467-020-15156-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Narayanan, U. , Nalavadi V., Nakamoto M., et al. 2008. “S6K1 Phosphorylates and Regulates Fragile X Mental Retardation Protein (FMRP) With the Neuronal Protein Synthesis‐Dependent Mammalian Target of Rapamycin (mTOR) Signaling Cascade.” Journal of Biological Chemistry 283, no. 27: 18478–18482. 10.1074/jbc.C800055200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Nishioka, K. , Funayama M., Vilariño‐Güell C., et al. 2014. “EIF4G1 Gene Mutations Are Not a Common Cause of Parkinson's Disease in the Japanese Population.” Parkinsonism and Related Disorders 20, no. 6: 659–661. 10.1016/j.parkreldis.2014.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Niu, W. , Yu S., Li X., et al. 2024. “Longitudinal Multi‐Omics Reveals Pathogenic TSC2 Variants Disrupt Developmental Trajectories of Human Cortical Organoids Derived From Tuberous Sclerosis Complex.” bioRxiv. 10.1101/2024.10.07.617121. [DOI]
  212. Numis, A. L. , Major P., Montenegro M. A., Muzykewicz D. A., Pulsifer M. B., and Thiele E. A.. 2011. “Identification of Risk Factors for Autism Spectrum Disorders in Tuberous Sclerosis Complex.” Neurology 76, no. 11: 981–987. 10.1212/WNL.0b013e3182104347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Nygård, O. , and Nilsson L.. 1990. “Translational Dynamics. Interactions Between the Translational Factors, tRNA and Ribosomes During Eukaryotic Protein Synthesis.” European Journal of Biochemistry 191, no. 1: 1–17. 10.1111/j.1432-1033.1990.tb19087.x. [DOI] [PubMed] [Google Scholar]
  214. O'Carroll, S. J. , Cook W. H., and Young D.. 2020. “AAV Targeting of Glial Cell Types in the Central and Peripheral Nervous System and Relevance to Human Gene Therapy.” Frontiers in Molecular Neuroscience 13: 618020. 10.3389/fnmol.2020.618020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Oliveira, M. M. , Mosto O., Carney R., et al. 2025. “Neuron Type‐Specific mRNA Translation Programs Provide a Gateway for Memory Consolidation.” bioRxiv, 2025.2001.2013.632784. 10.1101/2025.01.13.632784. [DOI]
  216. Osterweil, E. K. , Krueger D. D., Reinhold K., and Bear M. F.. 2010. “Hypersensitivity to mGluR5 and ERK1/2 Leads to Excessive Protein Synthesis in the Hippocampus of a Mouse Model of Fragile X Syndrome.” Journal of Neuroscience 30, no. 46: 15616–15627. 10.1523/jneurosci.3888-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Paliouras, G. N. , Hamilton L. K., Aumont A., Joppé S. E., Barnabé‐Heider F., and Fernandes K. J.. 2012. “Mammalian Target of Rapamycin Signaling Is a Key Regulator of the Transit‐Amplifying Progenitor Pool in the Adult and Aging Forebrain.” Journal of Neuroscience 32, no. 43: 15012–15026. 10.1523/JNEUROSCI.2248-12.2012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Panja, D. , Dagyte G., Bidinosti M., et al. 2009. “Novel Translational Control in Arc‐Dependent Long Term Potentiation Consolidation In Vivo.” Journal of Biological Chemistry 284, no. 46: 31498–31511. 10.1074/jbc.M109.056077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Park, K. K. , Liu K., Hu Y., et al. 2008. “Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway.” Science 322, no. 5903: 963–966. 10.1126/science.1161566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Parsons, R. G. , Gafford G. M., Baruch D. E., Riedner B. A., and Helmstetter F. J.. 2006. “Long‐Term Stability of Fear Memory Depends on the Synthesis of Protein but Not mRNA in the Amygdala.” European Journal of Neuroscience 23, no. 7: 1853–1859. 10.1111/j.1460-9568.2006.04723.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Pause, A. , Belsham G. J., Gingras A. C., et al. 1994. “Insulin‐Dependent Stimulation of Protein Synthesis by Phosphorylation of a Regulator of 5′‐Cap Function.” Nature 371, no. 6500: 762–767. 10.1038/371762a0. [DOI] [PubMed] [Google Scholar]
  222. Pende, M. , Um S. H., Mieulet V., et al. 2004. “S6K1(−/−)/S6K2(−/−) Mice Exhibit Perinatal Lethality and Rapamycin‐Sensitive 5′‐Terminal Oligopyrimidine mRNA Translation and Reveal a Mitogen‐Activated Protein Kinase‐Dependent S6 Kinase Pathway.” Molecular and Cellular Biology 24, no. 8: 3112–3124. 10.1128/mcb.24.8.3112-3124.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Poulin, F. , Gingras A. C., Olsen H., Chevalier S., and Sonenberg N.. 1998. “4E‐BP3, a New Member of the Eukaryotic Initiation Factor 4E‐Binding Protein Family.” Journal of Biological Chemistry 273, no. 22: 14002–14007. 10.1074/jbc.273.22.14002. [DOI] [PubMed] [Google Scholar]
  224. Pradeepkiran, J. A. , Baig J., Islam M. A., Kshirsagar S., and Reddy P. H.. 2024. “Amyloid‐β and Phosphorylated Tau Are the Key Biomarkers and Predictors of Alzheimer's Disease.” Aging and Disease 16, no. 2: 658. 10.14336/AD.2024.0286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Priya, A. , Antoine‐Bally S., Macé A. S., et al. 2023. “Codependencies of mTORC1 Signaling and Endolysosomal Actin Structures.” Science Advances 9, no. 37: eadd9084. 10.1126/sciadv.add9084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Puighermanal, E. , Biever A., Pascoli V., et al. 2017. “Ribosomal Protein S6 Phosphorylation Is Involved in Novelty‐Induced Locomotion, Synaptic Plasticity and mRNA Translation.” Frontiers in Molecular Neuroscience 10: 419. 10.3389/fnmol.2017.00419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Querfurth, H. , and Lee H.‐K.. 2021. “Mammalian/Mechanistic Target of Rapamycin (mTOR) Complexes in Neurodegeneration.” Molecular Neurodegeneration 16, no. 1: 44. 10.1186/s13024-021-00428-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Raab‐Graham, K. F. , Haddick P. C., Jan Y. N., and Jan L. Y.. 2006. “Activity‐ and mTOR‐Dependent Suppression of Kv1.1 Channel mRNA Translation in Dendrites.” Science 314, no. 5796: 144–148. 10.1126/science.1131693. [DOI] [PubMed] [Google Scholar]
  229. Ramírez‐Valle, F. , Badura M. L., Braunstein S., Narasimhan M., and Schneider R. J.. 2010. “Mitotic Raptor Promotes mTORC1 Activity, G2/M Cell Cycle Progression, and Internal Ribosome Entry Site‐Mediated mRNA Translation.” Molecular and Cellular Biology 30, no. 13: 3151–3164. 10.1128/MCB.00322-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Ran, I. , Gkogkas C. G., Vasuta C., et al. 2013. “Selective Regulation of GluA Subunit Synthesis and AMPA Receptor‐Mediated Synaptic Function and Plasticity by the Translation Repressor 4E‐BP2 in Hippocampal Pyramidal Cells.” Journal of Neuroscience 33, no. 5: 1872–1886. 10.1523/jneurosci.3264-12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Ran, I. , Laplante I., Bourgeois C., et al. 2009. “Persistent Transcription‐ and Translation‐Dependent Long‐Term Potentiation Induced by mGluR1 in Hippocampal Interneurons.” Journal of Neuroscience 29, no. 17: 5605–5615. 10.1523/jneurosci.5355-08.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Raught, B. , Peiretti F., Gingras A. C., et al. 2004. “Phosphorylation of Eucaryotic Translation Initiation Factor 4B Ser422 Is Modulated by S6 Kinases.” EMBO Journal 23, no. 8: 1761–1769. 10.1038/sj.emboj.7600193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Rennebeck, G. , Kleymenova E. V., Anderson R., Yeung R. S., Artzt K., and Walker C. L.. 1998. “Loss of Function of the Tuberous Sclerosis 2 Tumor Suppressor Gene Results in Embryonic Lethality Characterized by Disrupted Neuroepithelial Growth and Development.” Proceedings of the National Academy of Sciences of the United States of America 95, no. 26: 15629–15634. 10.1073/pnas.95.26.15629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Ribeiro, F. C. , Cozachenco D., Lacaille J.‐C., et al. 2024. “Genetic Reduction of the Translational Repressors FMRP and 4E‐BP2 Preserves Memory in Mouse Models of Alzheimer's Disease.” bioRxiv, 2024.2010.2008.617315. 10.1101/2024.10.08.617315. [DOI]
  235. Rizvi, S. J. , Grima E., Tan M., et al. 2014. “Treatment‐Resistant Depression in Primary Care Across Canada.” Canadian Journal of Psychiatry 59, no. 7: 349–357. 10.1177/070674371405900702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Rogers, G. W., Jr. , Richter N. J., Lima W. F., and Merrick W. C.. 2001. “Modulation of the Helicase Activity of eIF4A by eIF4B, eIF4H, and eIF4F.” Journal of Biological Chemistry 276, no. 33: 30914–30922. 10.1074/jbc.M100157200. [DOI] [PubMed] [Google Scholar]
  237. Romine, J. , Gao X., Xu X.‐M., So K. F., and Chen J.. 2015. “The Proliferation of Amplifying Neural Progenitor Cells Is Impaired in the Aging Brain and Restored by the mTOR Pathway Activation.” Neurobiology of Aging 36, no. 4: 1716–1726. 10.1016/j.neurobiolaging.2015.01.003. [DOI] [PubMed] [Google Scholar]
  238. Roux, P. P. , and Blenis J.. 2004. “ERK and p38 MAPK‐Activated Protein Kinases: A Family of Protein Kinases With Diverse Biological Functions.” Microbiology and Molecular Biology Reviews 68, no. 2: 320–344. 10.1128/mmbr.68.2.320-344.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Roux, P. P. , Shahbazian D., Vu H., et al. 2007. “RAS/ERK Signaling Promotes Site‐Specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap‐Dependent Translation.” Journal of Biological Chemistry 282, no. 19: 14056–14064. 10.1074/jbc.M700906200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Rozas, N. S. , Redell J. B., McKenna J., Moore A. N., Gambello M. J., and Dash P. K.. 2015. “Prolonging the Survival of Tsc2 Conditional Knockout Mice by Glutamine Supplementation.” Biochemical and Biophysical Research Communications 457, no. 4: 635–639. 10.1016/j.bbrc.2015.01.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Ryu, H. H. , Kim T., Kim J. W., et al. 2019. “Excitatory Neuron‐Specific SHP2‐ERK Signaling Network Regulates Synaptic Plasticity and Memory.” Science Signaling 12, no. 571: eaau5755. 10.1126/scisignal.aau5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Sabatini, D. M. , Erdjument‐Bromage H., Lui M., Tempst P., and Snyder S. H.. 1994. “RAFT1: A Mammalian Protein That Binds to FKBP12 in a Rapamycin‐Dependent Fashion and Is Homologous to Yeast TORs.” Cell 78, no. 1: 35–43. 10.1016/0092-8674(94)90570-3. [DOI] [PubMed] [Google Scholar]
  243. Sabers, C. J. , Martin M. M., Brunn G. J., et al. 1995. “Isolation of a Protein Target of the FKBP12‐Rapamycin Complex in Mammalian Cells.” Journal of Biological Chemistry 270, no. 2: 815–822. 10.1074/jbc.270.2.815. [DOI] [PubMed] [Google Scholar]
  244. Sancak, Y. , Peterson T. R., Shaul Y. D., et al. 2008. “The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1.” Science 320, no. 5882: 1496–1501. 10.1126/science.1157535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Santini, E. , Huynh T. N., and Klann E.. 2014. “Mechanisms of Translation Control Underlying Long‐Lasting Synaptic Plasticity and the Consolidation of Long‐Term Memory.” Progress in Molecular Biology and Translational Science 122: 131–167. 10.1016/b978-0-12-420170-5.00005-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Santini, E. , Huynh T. N., Longo F., et al. 2017. “Reducing eIF4E‐eIF4G Interactions Restores the Balance Between Protein Synthesis and Actin Dynamics in Fragile X Syndrome Model Mice.” Science Signaling 10, no. 504: eaan0665. 10.1126/scisignal.aan0665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Santini, E. , Huynh T. N., MacAskill A. F., et al. 2013. “Exaggerated Translation Causes Synaptic and Behavioural Aberrations Associated With Autism.” Nature 493, no. 7432: 411–415. 10.1038/nature11782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Sarbassov, D. D. , Ali S. M., Kim D. H., et al. 2004. “Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin‐Insensitive and Raptor‐Independent Pathway That Regulates the Cytoskeleton.” Current Biology 14, no. 14: 1296–1302. 10.1016/j.cub.2004.06.054. [DOI] [PubMed] [Google Scholar]
  249. Sarbassov, D. D. , Ali S. M., Sengupta S., et al. 2006. “Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB.” Molecular Cell 22, no. 2: 159–168. 10.1016/j.molcel.2006.03.029. [DOI] [PubMed] [Google Scholar]
  250. Sarbassov, D. D. , Guertin D. A., Ali S. M., and Sabatini D. M.. 2005. “Phosphorylation and Regulation of Akt/PKB by the Rictor‐mTOR Complex.” Science 307, no. 5712: 1098–1101. 10.1126/science.1106148. [DOI] [PubMed] [Google Scholar]
  251. Schaeffer, C. , Beaulande M., Ehresmann C., Ehresmann B., and Moine H.. 2003. “The RNA Binding Protein FMRP: New Connections and Missing Links.” Biology of the Cell 95, no. 3–4: 221–228. 10.1016/s0248-4900(03)00037-6. [DOI] [PubMed] [Google Scholar]
  252. Schalm, S. S. , and Blenis J.. 2002. “Identification of a Conserved Motif Required for mTOR Signaling.” Current Biology 12, no. 8: 632–639. 10.1016/s0960-9822(02)00762-5. [DOI] [PubMed] [Google Scholar]
  253. Shahani, N. , Huang W.‐C., Varnum M., Page D. T., and Subramaniam S.. 2017. “Forebrain Depletion of Rheb GTPase Elicits Spatial Memory Deficits in Mice.” Neurobiology of Aging 50: 134–143. 10.1016/j.neurobiolaging.2016.11.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Shahbazian, D. , Roux P. P., Mieulet V., et al. 2006. “The mTOR/PI3K and MAPK Pathways Converge on eIF4B to Control Its Phosphorylation and Activity.” EMBO Journal 25, no. 12: 2781–2791. 10.1038/sj.emboj.7601166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Shao, M. , Zhang W., Li Y., Tang L., Hao Z. Z., and Liu S.. 2023. “Patch‐Seq: Advances and Biological Applications.” Cellular and Molecular Neurobiology 44, no. 1: 8. 10.1007/s10571-023-01436-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Sharma, A. , Hoeffer C. A., Takayasu Y., et al. 2010. “Dysregulation of mTOR Signaling in Fragile X Syndrome.” Journal of Neuroscience 30, no. 2: 694–702. 10.1523/JNEUROSCI.3696-09.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Sharma, V. , Ounallah‐Saad H., Chakraborty D., et al. 2018. “Local Inhibition of PERK Enhances Memory and Reverses Age‐Related Deterioration of Cognitive and Neuronal Properties.” Journal of Neuroscience 38, no. 3: 648–658. 10.1523/jneurosci.0628-17.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Sharma, V. , Sood R., Khlaifia A., et al. 2020. “eIF2α Controls Memory Consolidation via Excitatory and Somatostatin Neurons.” Nature 586, no. 7829: 412–416. 10.1038/s41586-020-2805-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  259. Shi, Z. , Fujii K., Kovary K. M., et al. 2017. “Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome‐Wide.” Molecular Cell 67, no. 1: 71–83.e77. 10.1016/j.molcel.2017.05.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Shrestha, P. , Ayata P., Herrero‐Vidal P., et al. 2020. “Cell‐Type‐Specific Drug‐Inducible Protein Synthesis Inhibition Demonstrates That Memory Consolidation Requires Rapid Neuronal Translation.” Nature Neuroscience 23, no. 2: 281–292. 10.1038/s41593-019-0568-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Silva, M. C. , Nandi G. A., Tentarelli S., et al. 2020. “Prolonged Tau Clearance and Stress Vulnerability Rescue by Pharmacological Activation of Autophagy in Tauopathy Neurons.” Nature Communications 11, no. 1: 3258. 10.1038/s41467-020-16984-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Simbriger, K. , Amorim I. S., Lach G., et al. 2021. “Uncovering Memory‐Related Gene Expression in Contextual Fear Conditioning Using Ribosome Profiling.” Progress in Neurobiology 197: 101903. 10.1016/j.pneurobio.2020.101903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Slomnicki, L. P. , Pietrzak M., Vashishta A., et al. 2016. “Requirement of Neuronal Ribosome Synthesis for Growth and Maintenance of the Dendritic Tree.” Journal of Biological Chemistry 291, no. 11: 5721–5739. 10.1074/jbc.m115.682161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Sofer, A. , Lei K., Johannessen C. M., and Ellisen L. W.. 2005. “Regulation of mTOR and Cell Growth in Response to Energy Stress by REDD1.” Molecular and Cellular Biology 25, no. 14: 5834–5845. 10.1128/mcb.25.14.5834-5845.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Sonenberg, N. , and Dever T. E.. 2003. “Eukaryotic Translation Initiation Factors and Regulators.” Current Opinion in Structural Biology 13, no. 1: 56–63. 10.1016/s0959-440x(03)00009-5. [DOI] [PubMed] [Google Scholar]
  266. Sonenberg, N. , and Gingras A. C.. 1998. “The mRNA 5′ Cap‐Binding Protein eIF4E and Control of Cell Growth.” Current Opinion in Cell Biology 10, no. 2: 268–275. 10.1016/s0955-0674(98)80150-6. [DOI] [PubMed] [Google Scholar]
  267. Sonenberg, N. , and Hinnebusch A. G.. 2009. “Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets.” Cell 136, no. 4: 731–745. 10.1016/j.cell.2009.01.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Srinivasan, E. , Chandrasekhar G., Chandrasekar P., et al. 2021. “Alpha‐Synuclein Aggregation in Parkinson's Disease.” Frontiers in Medicine 8: 736978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Stan, R. , McLaughlin M. M., Cafferkey R., Johnson R. K., Rosenberg M., and Livi G. P.. 1994. “Interaction Between FKBP12‐Rapamycin and TOR Involves a Conserved Serine Residue.” Journal of Biological Chemistry 269, no. 51: 32027–32030. [PubMed] [Google Scholar]
  270. Stocker, H. , Radimerski T., Schindelholz B., et al. 2003. “Rheb Is an Essential Regulator of S6K in Controlling Cell Growth in Drosophila.” Nature Cell Biology 5, no. 6: 559–565. 10.1038/ncb995. [DOI] [PubMed] [Google Scholar]
  271. Stoica, L. , Zhu P. J., Huang W., Zhou H., Kozma S. C., and Costa‐Mattioli M.. 2011. “Selective Pharmacogenetic Inhibition of Mammalian Target of Rapamycin Complex I (mTORC1) Blocks Long‐Term Synaptic Plasticity and Memory Storage.” Proceedings of the National Academy of Sciences of the United States of America 108, no. 9: 3791–3796. 10.1073/pnas.1014715108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Stolovich, M. , Tang H., Hornstein E., et al. 2002. “Transduction of Growth or Mitogenic Signals into Translational Activation of TOP mRNAs Is Fully Reliant on the Phosphatidylinositol 3‐Kinase‐Mediated Pathway but Requires Neither S6K1 nor rpS6 Phosphorylation.” Molecular and Cellular Biology 22, no. 23: 8101–8113. 10.1128/mcb.22.23.8101-8113.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Sun, Y. X. , Ji X., Mao X., et al. 2014. “Differential Activation of mTOR Complex 1 Signaling in Human Brain With Mild to Severe Alzheimer's Disease.” Journal of Alzheimer's Disease 38, no. 2: 437–444. 10.3233/jad-131124. [DOI] [PubMed] [Google Scholar]
  274. Takei, N. , and Nawa H.. 2014. “mTOR Signaling and Its Roles in Normal and Abnormal Brain Development.” Frontiers in Molecular Neuroscience 7: 28. 10.3389/fnmol.2014.00028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Tang, H. , Hornstein E., Stolovich M., et al. 2001. “Amino Acid‐Induced Translation of TOP mRNAs Is Fully Dependent on Phosphatidylinositol 3‐Kinase‐Mediated Signaling, Is Partially Inhibited by Rapamycin, and Is Independent of S6K1 and rpS6 Phosphorylation.” Molecular and Cellular Biology 21, no. 24: 8671–8683. 10.1128/mcb.21.24.8671-8683.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Tang, S. J. , Reis G., Kang H., Gingras A.‐C., Sonenberg N., and Schuman E. M.. 2002. “A Rapamycin‐Sensitive Signaling Pathway Contributes to Long‐Term Synaptic Plasticity in the Hippocampus.” Proceedings of the National Academy of Sciences of the United States of America 99, no. 1: 467–472. 10.1073/pnas.012605299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Tavazoie, S. F. , Alvarez V. A., Ridenour D. A., Kwiatkowski D. J., and Sabatini B. L.. 2005. “Regulation of Neuronal Morphology and Function by the Tumor Suppressors Tsc1 and Tsc2.” Nature Neuroscience 8, no. 12: 1727–1734. 10.1038/nn1566. [DOI] [PubMed] [Google Scholar]
  278. Taymans, J. M. , Vandenberghe L. H., Haute C. V., et al. 2007. “Comparative Analysis of Adeno‐Associated Viral Vector Serotypes 1, 2, 5, 7, and 8 in Mouse Brain.” Human Gene Therapy 18, no. 3: 195–206. 10.1089/hum.2006.178. [DOI] [PubMed] [Google Scholar]
  279. Tee, A. R. , Manning B. D., Roux P. P., Cantley L. C., and Blenis J.. 2003. “Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase‐Activating Protein Complex Toward Rheb.” Current Biology 13, no. 15: 1259–1268. 10.1016/S0960-9822(03)00506-2. [DOI] [PubMed] [Google Scholar]
  280. Thomas, G. 1982. “Activation of Multiple S6 Phosphorylation and its Possible Role in the Alteration of mRNA Expression.” Brain Phosphoproteins ‐ Characterization and Function, Proceedings of a Workshop at the State University of Utrecht 179–194. 10.1016/s0079-6123(08)63775-9. [DOI] [Google Scholar]
  281. Thoreen, C. C. , Chantranupong L., Keys H. R., Wang T., Gray N. S., and Sabatini D. M.. 2012. “A Unifying Model for mTORC1‐Mediated Regulation of mRNA Translation.” Nature 485, no. 7396: 109–113. 10.1038/nature11083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Thoreen, C. C. , Kang S. A., Chang J. W., et al. 2009. “An ATP‐Competitive Mammalian Target of Rapamycin Inhibitor Reveals Rapamycin‐Resistant Functions of mTORC1*.” Journal of Biological Chemistry 284, no. 12: 8023–8032. 10.1074/jbc.M900301200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Thurman, A. J. , Potter L. A., Kim K., et al. 2020. “Controlled Trial of Lovastatin Combined With an Open‐Label Treatment of a Parent‐Implemented Language Intervention in Youth With Fragile X Syndrome.” Journal of Neurodevelopmental Disorders 12, no. 1: 12. 10.1186/s11689-020-09315-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Tischmeyer, W. , Schicknick H., Kraus M., et al. 2003. “Rapamycin‐Sensitive Signalling in Long‐Term Consolidation of Auditory Cortex‐Dependent Memory.” European Journal of Neuroscience 18, no. 4: 942–950. 10.1046/j.1460-9568.2003.02820.x. [DOI] [PubMed] [Google Scholar]
  285. Tramutola, A. , Triplett J. C., Di Domenico F., et al. 2015. “Alteration of mTOR Signaling Occurs Early in the Progression of Alzheimer Disease (AD): Analysis of Brain From Subjects With Pre‐Clinical AD, Amnestic Mild Cognitive Impairment and Late‐Stage AD.” Journal of Neurochemistry 133, no. 5: 739–749. 10.1111/jnc.13037. [DOI] [PubMed] [Google Scholar]
  286. Trinh, M. A. , and Klann E.. 2013. “Translational Control by eIF2α Kinases in Long‐Lasting Synaptic Plasticity and Long‐Term Memory.” Neurobiology of Learning and Memory 105: 93–99. 10.1016/j.nlm.2013.04.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Truitt, M. L. , Conn C. S., Shi Z., et al. 2015. “Differential Requirements for eIF4E Dose in Normal Development and Cancer.” Cell 162, no. 1: 59–71. 10.1016/j.cell.2015.05.049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Tsai, P. T. , Hull C., Chu Y., et al. 2012. “Autistic‐Like Behaviour and Cerebellar Dysfunction in Purkinje Cell Tsc1 Mutant Mice.” Nature 488, no. 7413: 647–651. 10.1038/nature11310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Tsokas, P. , Grace E. A., Chan P., et al. 2005. “Local Protein Synthesis Mediates a Rapid Increase in Dendritic Elongation Factor 1A After Induction of Late Long‐Term Potentiation.” Journal of Neuroscience 25, no. 24: 5833–5843. 10.1523/jneurosci.0599-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Tsokas, P. , Ma T., Iyengar R., Landau E. M., and Blitzer R. D.. 2007. “Mitogen‐Activated Protein Kinase Upregulates the Dendritic Translation Machinery in Long‐Term Potentiation by Controlling the Mammalian Target of Rapamycin Pathway.” Journal of Neuroscience 27, no. 22: 5885–5894. 10.1523/jneurosci.4548-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Tudor, J. C. , Davis E. J., Peixoto L., et al. 2016. “Sleep Deprivation Impairs Memory by Attenuating mTORC1‐Dependent Protein Synthesis.” Science Signaling 9, no. 425: ra41. 10.1126/scisignal.aad4949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Uhlmann, E. J. , Wong M., Baldwin R. L., et al. 2002. “Astrocyte‐Specific TSC1 Conditional Knockout Mice Exhibit Abnormal Neuronal Organization and Seizures.” Annals of Neurology 52, no. 3: 285–296. 10.1002/ana.10283. [DOI] [PubMed] [Google Scholar]
  293. Urbanska, M. , Gozdz A., Macias M., et al. 2018. “GSK3β Controls mTOR and Prosurvival Signaling in Neurons.” Molecular Neurobiology 55, no. 7: 6050–6062. 10.1007/s12035-017-0823-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. van Slegtenhorst, M. , Nellist M., Nagelkerken B., et al. 1998. “Interaction Between Hamartin and Tuberin, the TSC1 and TSC2 Gene Products.” Human Molecular Genetics 7, no. 6: 1053–1057. 10.1093/hmg/7.6.1053. [DOI] [PubMed] [Google Scholar]
  295. Vander Haar, E. , Lee S. I., Bandhakavi S., Griffin T. J., and Kim D. H.. 2007. “Insulin Signalling to mTOR Mediated by the Akt/PKB Substrate PRAS40.” Nature Cell Biology 9, no. 3: 316–323. 10.1038/ncb1547. [DOI] [PubMed] [Google Scholar]
  296. Venkatakrishnan, G. , Salgia R., and Groopman J. E.. 2000. “Chemokine Receptors CXCR‐1/2 Activate Mitogen‐Activated Protein Kinase via the Epidermal Growth Factor Receptor in Ovarian Cancer Cells.” Journal of Biological Chemistry 275, no. 10: 6868–6875. 10.1074/jbc.275.10.6868. [DOI] [PubMed] [Google Scholar]
  297. Wang, X. , Li W., Williams M., Terada N., Alessi D. R., and Proud C. G.. 2001. “Regulation of Elongation Factor 2 Kinase by p90RSK1 and p70 S6 Kinase.” EMBO Journal 20, no. 16: 4370–4379. 10.1093/emboj/20.16.4370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Wang, Y. , Barbaro M. F., and Baraban S. C.. 2006. “A Role for the mTOR Pathway in Surface Expression of AMPA Receptors.” Neuroscience Letters 401, no. 1–2: 35–39. 10.1016/j.neulet.2006.03.011. [DOI] [PubMed] [Google Scholar]
  299. Warden, D. , Rush A. J., Trivedi M. H., Fava M., and Wisniewski S. R.. 2007. “The STAR* D Project Results: A Comprehensive Review of Findings.” Current Psychiatry Reports 9, no. 6: 449–459. 10.1007/s11920-007-0061-3. [DOI] [PubMed] [Google Scholar]
  300. Way, S. W. , McKenna J. 3rd, Mietzsch U., Reith R. M., Wu H. C., and Gambello M. J.. 2009. “Loss of Tsc2 in Radial Glia Models the Brain Pathology of Tuberous Sclerosis Complex in the Mouse.” Human Molecular Genetics 18, no. 7: 1252–1265. 10.1093/hmg/ddp025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  301. Weissenboeck, F. P. , Schepers H., and Rentmeister A.. 2023. “Optochemical Control of mRNA Translation in Eukaryotes.” Angewandte Chemie International Edition 62, no. 23: e202301778. 10.1002/anie.202301778. [DOI] [PubMed] [Google Scholar]
  302. Weston, M. C. , Chen H., and Swann J. W.. 2014. “Loss of mTOR Repressors Tsc1 or Pten Has Divergent Effects on Excitatory and Inhibitory Synaptic Transmission in Single Hippocampal Neuron Cultures.” Frontiers in Molecular Neuroscience 7: 1. 10.3389/fnmol.2014.00001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Wiebe, S. , Huang Z., Ladak R. J., et al. 2023. “Cell‐Type‐Specific Translational Control of Spatial Working Memory by the Cap‐Binding Protein 4EHP.” Molecular Brain 16, no. 1: 9. 10.1186/s13041-023-00995-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Wiebe, S. , Nagpal A., and Sonenberg N.. 2020. “Dysregulated Translational Control in Brain Disorders: From Genes to Behavior.” Current Opinion in Genetics and Development 65: 34–41. 10.1016/j.gde.2020.05.005. [DOI] [PubMed] [Google Scholar]
  305. Wiebe, S. , Nagpal A., Truong V. T., et al. 2019. “Inhibitory Interneurons Mediate Autism‐Associated Behaviors via 4E‐BP2.” Proceedings of the National Academy of Sciences of the United States of America 116, no. 36: 18060–18067. 10.1073/pnas.1908126116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Wilhelm, M. , Sych Y., Fomins A., et al. 2023. “Striatum‐Projecting Prefrontal Cortex Neurons Support Working Memory Maintenance.” Nature Communications 14, no. 1: 7016. 10.1503/jpn.160175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Wong, C. , Tavares‐Ferreira D., Thörn Perez C., et al. 2023. “4E‐BP1–Dependent Translation in Nociceptors Controls Mechanical Hypersensitivity via TRIM32/Type I Interferon Signaling.” Science Advances 9, no. 44: eadh9603. 10.1126/sciadv.adh9603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  308. Xing, J. , Ginty D. D., and Greenberg M. E.. 1996. “Coupling of the RAS‐MAPK Pathway to Gene Activation by RSK2, a Growth Factor‐Regulated CREB Kinase.” Science 273, no. 5277: 959–963. 10.1126/science.273.5277.959. [DOI] [PubMed] [Google Scholar]
  309. Yang, G. , Murashige D. S., Humphrey S. J., and James D. E.. 2015. “A Positive Feedback Loop Between Akt and mTORC2 via SIN1 Phosphorylation.” Cell Reports 12, no. 6: 937–943. 10.1016/j.celrep.2015.07.016. [DOI] [PubMed] [Google Scholar]
  310. Yanow, S. K. , Manseau F., Hislop J., Castellucci V. F., and Sossin W. S.. 1998. “Biochemical Pathways by Which Serotonin Regulates Translation in the Nervous System of Aplysia.” Journal of Neurochemistry 70, no. 2: 572–583. 10.1046/j.1471-4159.1998.70020572.x. [DOI] [PubMed] [Google Scholar]
  311. Zeng, B. , Liu Z., Lu Y., et al. 2023. “The Single‐Cell and Spatial Transcriptional Landscape of Human Gastrulation and Early Brain Development.” Cell Stem Cell 30, no. 6: 851–866.e857. 10.1016/j.stem.2023.04.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Zhang, Y. , Xu S., Liang K. Y., et al. 2017. “Neuronal mTORC1 Is Required for Maintaining the Nonreactive State of Astrocytes.” Journal of Biological Chemistry 292, no. 1: 100–111. 10.1074/jbc.M116.744482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Zhou, W. , Wang N., Yang C., Li X.‐M., Zhou Z.‐Q., and Yang J.‐J.. 2014. “Ketamine‐Induced Antidepressant Effects Are Associated With AMPA Receptors‐Mediated Upregulation of mTOR and BDNF in Rat Hippocampus and Prefrontal Cortex.” European Psychiatry 29, no. 7: 419–423. 10.1503/jpn.160175. [DOI] [PubMed] [Google Scholar]
  314. Zhu, P. J. , Chen C. J., Mays J., Stoica L., and Costa‐Mattioli M.. 2018. “mTORC2, but Not mTORC1, Is Required for Hippocampal mGluR‐LTD and Associated Behaviors.” Nature Neuroscience 21, no. 6: 799–802. 10.1038/s41593-018-0156-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Zimmermann, H. R. , Yang W., Beckelman B. C., et al. 2018. “Genetic Removal of eIF2α Kinase PERK in Mice Enables Hippocampal L‐LTP Independent of mTORC1 Activity.” Journal of Neurochemistry 146, no. 2: 133–144. 10.1111/jnc.14306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Zou, J. , Zhou L., Du X.‐X., et al. 2011. “Rheb1 Is Required for mTORC1 and Myelination in Postnatal Brain Development.” Developmental Cell 20, no. 1: 97–108. 10.1503/jpn.160175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The authors have nothing to report.


Articles from Journal of Neurochemistry are provided here courtesy of Wiley

RESOURCES