Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1987 Dec;155:165–176.

The cytoarchitecture of the nucleus cuneiformis. A Nissl and Golgi study.

M Gioia 1, R Bianchi 1
PMCID: PMC1261884  PMID: 3503047

Abstract

This investigation attempts to clarify the cytoarchitectural organisation of the neurons of the nucleus cuneiformis, a reticular nucleus of the midbrain particularly involved in locomotor activities. The study was carried out on the cat and man, in Nissl and Golgi material. The nerve cell bodies, which are small or medium sized, have a light basophilic cytoplasm and a large light nucleus usually containing one nucleolus. In Golgi material multipolar and fusiform cells can be identified. Multipolar cells, which form the majority of the neural population, have 3-7 primary spiny dendrites and an axon which often projects outside the nucleus. Fusiform cells have one or two primary dendrites endowed with spines, which are, however, less numerous than those of multipolar neurons. The axons generally end inside the nucleus. The main difference between man and the cat seems to be in the length and width of the neuronal arborisation, which are considerably greater in the former species. The characteristics of the two neuronal types suggest a projective function of the multipolar elements, but an interneuronal activity of the fusiform ones. The data support the similarity already found at the ultrastructural level between the nucleus cuneiformis and the periaqueductal grey matter, but on the other hand confirm the lesser degree of cytoarchitectural complexity of the nucleus.

Full text

PDF
165

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abols I. A., Basbaum A. I. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. J Comp Neurol. 1981 Sep 10;201(2):285–297. doi: 10.1002/cne.902010211. [DOI] [PubMed] [Google Scholar]
  2. Amemiya M., Yamaguchi T. Fictive locomotion of the forelimb evoked by stimulation of the mesencephalic locomotor region in the decerebrate cat. Neurosci Lett. 1984 Sep 7;50(1-3):91–96. doi: 10.1016/0304-3940(84)90468-3. [DOI] [PubMed] [Google Scholar]
  3. BELL C., SIERRA G., BUENDIA N., SEGUNDO J. P. SENSORY PROPERTIES OF NEURONS IN THE MESENCEPHALIC RETICULAR FORMATION. J Neurophysiol. 1964 Nov;27:961–987. doi: 10.1152/jn.1964.27.6.961. [DOI] [PubMed] [Google Scholar]
  4. Beitz A. J., Shepard R. D. The midbrain periaqueductal gray in the rat. II. A Golgi analysis. J Comp Neurol. 1985 Jul 22;237(4):460–475. doi: 10.1002/cne.902370404. [DOI] [PubMed] [Google Scholar]
  5. Beitz A. J. The midbrain periaqueductal gray in the rat. I. Nuclear volume, cell number, density, orientation, and regional subdivisions. J Comp Neurol. 1985 Jul 22;237(4):445–459. doi: 10.1002/cne.902370403. [DOI] [PubMed] [Google Scholar]
  6. Beitz A. J. The nuclei of origin of brainstem serotonergic projections to the rodent spinal trigeminal nucleus. Neurosci Lett. 1982 Oct 23;32(3):223–228. doi: 10.1016/0304-3940(82)90297-x. [DOI] [PubMed] [Google Scholar]
  7. Beitz A. J. The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience. 1982 Jan;7(1):133–159. doi: 10.1016/0306-4522(82)90157-9. [DOI] [PubMed] [Google Scholar]
  8. Bianchi R., Gioia M. Ultrastructural features of the synapses of the periaqueductal gray matter (PAG) of the cat. J Hirnforsch. 1984;25(3):275–283. [PubMed] [Google Scholar]
  9. Björkeland M., Boivie J. An anatomical study of the projections from the dorsal column nuclei to the midbrain in cat. Anat Embryol (Berl) 1984;170(1):29–43. doi: 10.1007/BF00319455. [DOI] [PubMed] [Google Scholar]
  10. Castiglioni A. J., Gallaway M. C., Coulter J. D. Spinal projections from the midbrain in monkey. J Comp Neurol. 1978 Mar 15;178(2):329–346. doi: 10.1002/cne.901780208. [DOI] [PubMed] [Google Scholar]
  11. Chung J. M., Kevetter G. A., Yezierski R. P., Haber L. H., Martin R. F., Willis W. D. Midbrain nuclei projecting to the medial medulla oblongata in the monkey. J Comp Neurol. 1983 Feb 10;214(1):93–102. doi: 10.1002/cne.902140110. [DOI] [PubMed] [Google Scholar]
  12. Edwards S. B. Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J Comp Neurol. 1975 Jun 1;161(3):341–358. doi: 10.1002/cne.901610306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edwards S. B., de Olmos J. S. Autoradiographic studies of the projections of the midbrain reticular formation: ascending projections of nucleus cuneiformis. J Comp Neurol. 1976 Feb 15;165(4):417–431. doi: 10.1002/cne.901650403. [DOI] [PubMed] [Google Scholar]
  14. Gioia M., Bianchi R., Tredici G. Cytoarchitecture of the periaqueductal gray matter in the cat: a quantitative Nissl study. Acta Anat (Basel) 1984;119(2):113–117. doi: 10.1159/000145870. [DOI] [PubMed] [Google Scholar]
  15. Gioia M., Bianchi R. Ultrastructural study of the nucleus Cuneiformis in the cat. J Hirnforsch. 1987;28(4):375–383. [PubMed] [Google Scholar]
  16. Gioia M., Tredici G., Bianchi R. A Golgi study of the periaqueductal gray matter in the cat. Neuronal types and their distribution. Exp Brain Res. 1985;58(2):318–332. doi: 10.1007/BF00235313. [DOI] [PubMed] [Google Scholar]
  17. Gioia M., Tredici G., Bianchi R. The ultrastructure of the periaqueductal gray matter of the cat. J Submicrosc Cytol. 1983 Oct;15(4):1013–1026. [PubMed] [Google Scholar]
  18. Grillner S., Shik M. L. On the descending control of the lumbosacral spinal cord from the "mesencephalic locomotor region". Acta Physiol Scand. 1973 Mar;87(3):320–333. doi: 10.1111/j.1748-1716.1973.tb05396.x. [DOI] [PubMed] [Google Scholar]
  19. Hamilton B. L. Cytoarchitectural subdivisions of the periaqueductal gray matter in the cat. J Comp Neurol. 1973 May 1;149(1):1–27. doi: 10.1002/cne.901490102. [DOI] [PubMed] [Google Scholar]
  20. Jell R. M., Elliott C., Jordan L. M. Initiation of locomotion from the mesencephalic locomotor region: effects of selective brainstem lesions. Brain Res. 1985 Feb 25;328(1):121–128. doi: 10.1016/0006-8993(85)91330-7. [DOI] [PubMed] [Google Scholar]
  21. Jordan L. M., Pratt C. A., Menzies J. E. Locomotion evoked by brain stem stimulation: occurrence without phasic segmental afferent input. Brain Res. 1979 Nov 9;177(1):204–207. doi: 10.1016/0006-8993(79)90933-8. [DOI] [PubMed] [Google Scholar]
  22. Kerr F. W. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J Comp Neurol. 1975 Feb 1;159(3):335–356. doi: 10.1002/cne.901590304. [DOI] [PubMed] [Google Scholar]
  23. Laemle L. K. Neuronal populations of the human periaqueductal gray, nucleus lateralis. J Comp Neurol. 1979 Jul 1;186(1):93–107. doi: 10.1002/cne.901860107. [DOI] [PubMed] [Google Scholar]
  24. Liu R. P., Hamilton B. L. Neurons of the periaqueductal gray matter as revealed by Golgi study. J Comp Neurol. 1980 Jan 15;189(2):403–418. doi: 10.1002/cne.901890212. [DOI] [PubMed] [Google Scholar]
  25. Ljungdahl A., Hökfelt T., Nilsson G. Distribution of substance P-like immunoreactivity in the central nervous system of the rat--I. Cell bodies and nerve terminals. Neuroscience. 1978;3(10):861–943. doi: 10.1016/0306-4522(78)90116-1. [DOI] [PubMed] [Google Scholar]
  26. Mantyh P. W. The midbrain periaqueductal gray in the rat, cat, and monkey: a Nissl, Weil, and Golgi analysis. J Comp Neurol. 1982 Feb 1;204(4):349–363. doi: 10.1002/cne.902040406. [DOI] [PubMed] [Google Scholar]
  27. Menétrey D., Chaouch A., Binder D., Besson J. M. The origin of the spinomesencephalic tract in the rat: an anatomical study using the retrograde transport of horseradish peroxidase. J Comp Neurol. 1982 Apr 1;206(2):193–207. doi: 10.1002/cne.902060208. [DOI] [PubMed] [Google Scholar]
  28. Miller S., Van Der Burg J., Van Der Meché F. Coordination of movements of the kindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res. 1975 Jun 27;91(2):217–237. doi: 10.1016/0006-8993(75)90544-2. [DOI] [PubMed] [Google Scholar]
  29. Mori S., Shik M. L., Yagodnitsyn A. S. Role of pontine tegmentum for locomotor control in mesencephalic cat. J Neurophysiol. 1977 Mar;40(2):284–295. doi: 10.1152/jn.1977.40.2.284. [DOI] [PubMed] [Google Scholar]
  30. Moss M. S., Basbaum A. I. The peptidergic organization of the cat periaqueductal gray. II. The distribution of immunoreactive substance P and vasoactive intestinal polypeptide. J Neurosci. 1983 Jul;3(7):1437–1449. doi: 10.1523/JNEUROSCI.03-07-01437.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Moss M. S., Glazer E. J., Basbaum A. I. The peptidergic organization of the cat periaqueductal gray. I. The distribution of immunoreactive enkephalin-containing neurons and terminals. J Neurosci. 1983 Mar;3(3):603–616. doi: 10.1523/JNEUROSCI.03-03-00603.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sar M., Stumpf W. E., Miller R. J., Chang K. J., Cuatrecasas P. Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol. 1978 Nov 1;182(1):17–37. doi: 10.1002/cne.901820103. [DOI] [PubMed] [Google Scholar]
  33. Shik M. L., Severin F. V., Orlovskii G. N. Struktury mozgovogo stvola, otvetstvennye za vyzvannuiu lokomotsiiu. Fiziol Zh SSSR Im I M Sechenova. 1967 Sep;53(9):1125–1132. [PubMed] [Google Scholar]
  34. Steeves J. D., Jordan L. M. Autoradiographic demonstration of the projections from the mesencephalic locomotor region. Brain Res. 1984 Jul 30;307(1-2):263–276. doi: 10.1016/0006-8993(84)90480-3. [DOI] [PubMed] [Google Scholar]
  35. Steeves J. D., Jordan L. M., Lake N. The close proximity of catecholamine-containing cells to the 'mesencephalic locomotor region' (MLR). Brain Res. 1975 Dec 26;100(3):663–670. doi: 10.1016/0006-8993(75)90166-3. [DOI] [PubMed] [Google Scholar]
  36. Steeves J. D., Schmidt B. J., Skovgaard B. J., Jordan L. M. Effect of noradrenaline and 5-hydroxytryptamine depletion on locomotion in the cat. Brain Res. 1980 Mar 10;185(2):349–362. doi: 10.1016/0006-8993(80)91073-2. [DOI] [PubMed] [Google Scholar]
  37. TABER E. The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol. 1961 Feb;116:27–69. doi: 10.1002/cne.901160104. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES