Abstract
Although much is known about fibrin polymerization, because it is complex, the effects of various modifications are not intuitively obvious and many experimental observations remain unexplained. A kinetic model presented here that is based on information about mechanisms of assembly accounts for most experimental observations and allows hypotheses about the effects of various factors to be tested. Differential equations describing the kinetics of polymerization were written and then solved numerically. The results have been related to turbidity profiles and electron microscope observations. The concentrations of intermediates in fibrin polymerization, and fiber diameters, fiber and protofibril lengths have been calculated from these models. The simplest model considered has three steps; fibrinopeptide A cleavage, protofibril formation, and lateral aggregation of protofibrils to form fibers. The average number of protofibrils per fiber, which is directly related to turbidity, can be calculated and plotted as a function of time. The lag period observed in turbidity profiles cannot be accurately simulated by such a model, but can be simulated by modifying the model such that oligomers must reach a minimum length before they aggregate. Many observations, reported here and elsewhere, can be accounted for by this model; the basic model may be modified to account for other experimental observations. Modeling predicts effects of changes in the rate of fibrinopeptide cleavage consistent with electron microscope and turbidity observations. Changes only in the rate constants for initiation of fiber growth or for addition of protofibrils to fibers are sufficient to account for a wide variety of other observations, e.g., the effects of ionic strength or fibrinopeptide B removal or thrombospondin. The effects of lateral aggregation of fibers has also been modeled: such behavior has been observed in turbidity curves and electron micrographs of clots formed in the presence of platelet factor 4. Thus, many aspects of clot structure and factors that influence structure are directly related to the rates of these steps of polymerization, even though these effects are often not obvious. Thus, to a large extent, clot structure is kinetically determined.
Full text
PDF

















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bale M. D., Mosher D. F. Effects of thrombospondin on fibrin polymerization and structure. J Biol Chem. 1986 Jan 15;261(2):862–868. [PubMed] [Google Scholar]
- Carr M. E. Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb Haemost. 1988 Jun 16;59(3):535–539. [PubMed] [Google Scholar]
- Carr M. E., Gabriel D. A. The effect of dextran 70 on the structure of plasma-derived fibrin gels. J Lab Clin Med. 1980 Dec;96(6):985–993. [PubMed] [Google Scholar]
- Carr M. E., Jr, Cromartie R., Gabriel D. A. Effect of homo poly(L-amino acids) on fibrin assembly: role of charge and molecular weight. Biochemistry. 1989 Feb 7;28(3):1384–1388. doi: 10.1021/bi00429a066. [DOI] [PubMed] [Google Scholar]
- Carr M. E., Jr Effect of hydroxyethyl starch on the structure of thrombin- and reptilase-induced fibrin gels. J Lab Clin Med. 1986 Dec;108(6):556–561. [PubMed] [Google Scholar]
- Carr M. E., Jr, Gabriel D. A., McDonagh J. Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem J. 1986 Nov 1;239(3):513–516. doi: 10.1042/bj2390513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carr M. E., White G. C., 2nd, Gabriel D. A. Platelet factor 4 enhances fibrin fiber polymerization. Thromb Res. 1987 Mar 1;45(5):539–543. doi: 10.1016/0049-3848(87)90316-1. [DOI] [PubMed] [Google Scholar]
- Dang C. V., Shin C. K., Bell W. R., Nagaswami C., Weisel J. W. Fibrinogen sialic acid residues are low affinity calcium-binding sites that influence fibrin assembly. J Biol Chem. 1989 Sep 5;264(25):15104–15108. [PubMed] [Google Scholar]
- Dhall T. Z., Bryce W. A., Dhall D. P. Effects of dextran on the molecular structure and tensile behaviour of human fibrin. Thromb Haemost. 1976 Jun 30;35(3):737–745. [PubMed] [Google Scholar]
- Erickson H. P., Fowler W. E. Electron microscopy of fibrinogen, its plasmic fragments and small polymers. Ann N Y Acad Sci. 1983 Jun 27;408:146–163. doi: 10.1111/j.1749-6632.1983.tb23242.x. [DOI] [PubMed] [Google Scholar]
- Fowler W. E., Hantgan R. R., Hermans J., Erickson H. P. Structure of the fibrin protofibril. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4872–4876. doi: 10.1073/pnas.78.8.4872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabriel D. A., Smith L. A., Folds J. D., Davis L., Cancelosi S. E. The influence of immunoglobulin (IgG) on the assembly of fibrin gels. J Lab Clin Med. 1983 Apr;101(4):545–552. [PubMed] [Google Scholar]
- Galanakis D. K., Lane B. P., Simon S. R. Albumin modulates lateral assembly of fibrin polymers: evidence of enhanced fine fibril formation and of unique synergism with fibrinogen. Biochemistry. 1987 Apr 21;26(8):2389–2400. doi: 10.1021/bi00382a046. [DOI] [PubMed] [Google Scholar]
- Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
- Hantgan R., Fowler W., Erickson H., Hermans J. Fibrin assembly: a comparison of electron microscopic and light scattering results. Thromb Haemost. 1980 Dec 19;44(3):119–124. [PubMed] [Google Scholar]
- Hardy J. J., Carrell N. A., McDonagh J. Calcium ion functions in fibrinogen conversion to fibrin. Ann N Y Acad Sci. 1983 Jun 27;408:279–287. doi: 10.1111/j.1749-6632.1983.tb23251.x. [DOI] [PubMed] [Google Scholar]
- Holt J. C., Niewiarowski S. Platelet basic protein, low-affinity platelet factor 4, and beta-thromboglobulin: purification and identification. Methods Enzymol. 1989;169:224–233. doi: 10.1016/0076-6879(89)69063-5. [DOI] [PubMed] [Google Scholar]
- Janmey P. A., Erdile L., Bale M. D., Ferry J. D. Kinetics of fibrin oligomer formation observed by electron microscopy. Biochemistry. 1983 Aug 30;22(18):4336–4340. doi: 10.1021/bi00287a026. [DOI] [PubMed] [Google Scholar]
- Jones M., Gabriel D. A. Influence of the subendothelial basement membrane components on fibrin assembly. Evidence for a fibrin binding site on type IV collagen. J Biol Chem. 1988 May 25;263(15):7043–7048. [PubMed] [Google Scholar]
- LATALLO Z. S., FLETCHER A. P., ALKJAERSIG N., SHERRY S. Influence of pH, ionic strength, neutral ions, and thrombin on fibrin polymerization. Am J Physiol. 1962 Apr;202:675–680. doi: 10.1152/ajplegacy.1962.202.4.675. [DOI] [PubMed] [Google Scholar]
- Langer B. G., Weisel J. W., Dinauer P. A., Nagaswami C., Bell W. R. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J Biol Chem. 1988 Oct 15;263(29):15056–15063. [PubMed] [Google Scholar]
- Lewis S. D., Shields P. P., Shafer J. A. Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly of fibrin. J Biol Chem. 1985 Aug 25;260(18):10192–10199. [PubMed] [Google Scholar]
- Martinez J., Palascak J., Peters C. Functional and metabolic properties of human asialofibrinogen. J Lab Clin Med. 1977 Feb;89(2):367–377. [PubMed] [Google Scholar]
- Medved' L., Ugarova T., Veklich Y., Lukinova N., Weisel J. Electron microscope investigation of the early stages of fibrin assembly. Twisted protofibrils and fibers. J Mol Biol. 1990 Dec 5;216(3):503–509. doi: 10.1016/0022-2836(90)90376-W. [DOI] [PubMed] [Google Scholar]
- Mihalyi E. Clotting of bovine fibrinogen. Calcium binding to fibrin during clotting and its dependence on release of fibrinopeptide B. Biochemistry. 1988 Feb 9;27(3):967–976. doi: 10.1021/bi00403a020. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., DiOrio J. P., Müller M. F., Shainoff J. R., Siebenlist K. R., Amrani D. L., Homandberg G. A., Soria J., Soria C., Samama M. Studies on the ultrastructure of fibrin lacking fibrinopeptide B (beta-fibrin). Blood. 1987 Apr;69(4):1073–1081. [PubMed] [Google Scholar]
- Nair C. H., Dhall D. P. Studies on fibrin network structure: the effect of some plasma proteins. Thromb Res. 1991 Feb 1;61(3):315–325. doi: 10.1016/0049-3848(91)90109-a. [DOI] [PubMed] [Google Scholar]
- Sato H., Nakajima A. Kinetic study on the initial stage of the fibrinogen-fibrin conversion by thrombin. (II) Application of enzyme kinetics to turbidimetrical method. Thromb Res. 1984 Jul 15;35(2):133–139. doi: 10.1016/0049-3848(84)90208-1. [DOI] [PubMed] [Google Scholar]
- Shah G. A., Nair C. H., Dhall D. P. Comparison of fibrin networks in plasma and fibrinogen solution. Thromb Res. 1987 Feb 1;45(3):257–264. doi: 10.1016/0049-3848(87)90193-9. [DOI] [PubMed] [Google Scholar]
- Shen L. L., Hermans J., McDonagh J., McDonagh R. P. Role of fibrinopeptide B release: comparison of fibrins produced by thrombin and Ancrod. Am J Physiol. 1977 Jun;232(6):H629–H633. doi: 10.1152/ajpheart.1977.232.6.H629. [DOI] [PubMed] [Google Scholar]
- Tuszynski G. P., Rothman V. L., Murphy A., Knudsen K. A. Role of thrombospondin in hemostasis and cell adhesion. Semin Thromb Hemost. 1987 Jul;13(3):361–368. doi: 10.1055/s-2007-1003512. [DOI] [PubMed] [Google Scholar]
- Voter W. A., Lucaveche C., Erickson H. P. Concentration of protein in fibrin fibers and fibrinogen polymers determined by refractive index matching. Biopolymers. 1986 Dec;25(12):2375–2384. doi: 10.1002/bip.360251214. [DOI] [PubMed] [Google Scholar]
- Weisel J. W. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophys J. 1986 Dec;50(6):1079–1093. doi: 10.1016/S0006-3495(86)83552-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisel J. W. The electron microscope band pattern of human fibrin: various stains, lateral order, and carbohydrate localization. J Ultrastruct Mol Struct Res. 1986 Jul-Sep;96(1-3):176–188. doi: 10.1016/0889-1605(86)90019-4. [DOI] [PubMed] [Google Scholar]
- Wilf J., Gladner J. A., Minton A. P. Acceleration of fibrin gel formation by unrelated proteins. Thromb Res. 1985 Mar 15;37(6):681–688. doi: 10.1016/0049-3848(85)90197-5. [DOI] [PubMed] [Google Scholar]
- Wilf J., Minton A. P. Soluble fibrin-fibrinogen complexes as intermediates in fibrin gel formation. Biochemistry. 1986 Jun 3;25(11):3124–3133. doi: 10.1021/bi00359a009. [DOI] [PubMed] [Google Scholar]
- Wolfe J. K., Waugh D. F. Relations between enzymatic and association reactions in the development of bovine fibrin clot structure. Arch Biochem Biophys. 1981 Oct 1;211(1):125–142. doi: 10.1016/0003-9861(81)90438-0. [DOI] [PubMed] [Google Scholar]





