Abstract
The kinetics of geminate recombination for the diliganded species alpha 2CO beta 2 and alpha 2 beta 2CO of human hemoglobin were studied using flash photolysis. The unstable diliganded species were generated just before photolysis by chemical reduction in a continuous flow reactor from the more stable valency hybrids alpha 2CO beta 2+ and alpha 2+ beta 2CO, which could be prepared by high pressure liquid chromatography. Before the flash photolysis studies, the hybrids had been characterized by double-mixing stopped-flow kinetics experiments. At pH 6.0 in the presence of inositol hexaphosphate (IHP) both of the diliganded species show second order kinetics for overall addition of a third CO that is clearly characteristic of the T state (l' = 1-2 x 10(5) M-1 s-1), whereas at higher pH and in the absence of IHP they show combination rates characteristic of an R state. The kinetics of geminate recombination following photolysis of a bound CO, however, showed little dependence on pH and IHP concentration. This surprising observation is explained on the basis that the kinetics of geminate recombination of CO primarily depends on the tertiary structure of the ligand binding site, which apparently does not differ much between the R state and the liganded T state formed on adding IHP in this system. Since this explanation requires distinguishing different tertiary structures within a particular quaternary structure, it amounts to a contradiction to the two-state allosteric model.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinrud P. A., Han C., Hochstrasser R. M. Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8387–8391. doi: 10.1073/pnas.86.21.8387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
- Bandyopadhyay D., Walda K. N., Magde D., Traylor T. G., Sharma V. S. Quaternary structure and the geminate recombination of carp hemoglobin with methylisocyanide. Biochem Biophys Res Commun. 1990 Aug 31;171(1):306–312. doi: 10.1016/0006-291x(90)91393-7. [DOI] [PubMed] [Google Scholar]
- Banerjee R., Cassoly R. Oxygen equilibria of human hemoglobin valency hybrids. Discussion on the intrinsic properties of alpha and beta chains in the native protein. J Mol Biol. 1969 Jun 14;42(2):351–361. doi: 10.1016/0022-2836(69)90048-5. [DOI] [PubMed] [Google Scholar]
- Berjis M., Bandyopadhyay D., Sharma V. S. Double-mixing kinetic studies of the reactions of methyl isocyanide and CO with diliganded intermediates of hemoglobin: alpha 2CO beta 2 and alpha 2 beta 2CO. Biochemistry. 1990 Oct 30;29(43):10106–10113. doi: 10.1021/bi00495a014. [DOI] [PubMed] [Google Scholar]
- Campbell B. F., Magde D., Sharma V. S. Geminate recombination of CO in rabbit, opossum, and adult hemoglobins. J Biol Chem. 1985 Mar 10;260(5):2752–2756. [PubMed] [Google Scholar]
- Cassoly R., Gibson Q. H. The kinetics of ligand binding to hemoglobin valency hybrids and the effect of anions. J Biol Chem. 1972 Nov 25;247(22):7332–7341. [PubMed] [Google Scholar]
- Cobau W. G., LeGrange J. D., Austin R. H. Kinetic differences at low temperatures between R and T state carbon monoxide-carp hemoglobin. Biophys J. 1985 Jun;47(6):781–786. doi: 10.1016/S0006-3495(85)83981-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dlott D. D., Frauenfelder H., Langer P., Roder H., DiIorio E. E. Nanosecond flash photolysis study of carbon monoxide binding to the beta chain of hemoglobin Zürich [beta 63(E7)His leads to Arg]. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6239–6243. doi: 10.1073/pnas.80.20.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frauenfelder H., Wolynes P. G. Rate theories and puzzles of hemeprotein kinetics. Science. 1985 Jul 26;229(4711):337–345. doi: 10.1126/science.4012322. [DOI] [PubMed] [Google Scholar]
- Friedman J. M. Structure, dynamics, and reactivity in hemoglobin. Science. 1985 Jun 14;228(4705):1273–1280. doi: 10.1126/science.4001941. [DOI] [PubMed] [Google Scholar]
- Hofrichter J., Henry E. R., Sommer J. H., Deutsch R., Ikeda-Saito M., Yonetani T., Eaton W. A. Nanosecond optical spectra of iron-cobalt hybrid hemoglobins: geminate recombination, conformational changes, and intersubunit communication. Biochemistry. 1985 May 21;24(11):2667–2679. doi: 10.1021/bi00332a012. [DOI] [PubMed] [Google Scholar]
- Lin M. J., Noble R. W., Winterhalter K. H., DiIorio E. E. Effects of ligand size on pH and organic phosphate-dependent affinity changes in carp hemoglobin as measured by isonitrile binding. Biochim Biophys Acta. 1988 Apr 28;954(1):73–81. doi: 10.1016/0167-4838(88)90057-x. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Marden M. C., Hazard E. S., Kimble C., Gibson Q. H. Geminate ligand recombination as a probe of the R, T equilibrium in hemoglobin. Eur J Biochem. 1987 Dec 15;169(3):611–615. doi: 10.1111/j.1432-1033.1987.tb13652.x. [DOI] [PubMed] [Google Scholar]
- Marden M. C., Kister J., Bohn B., Poyart C. T-state hemoglobin with four ligands bound. Biochemistry. 1988 Mar 8;27(5):1659–1664. doi: 10.1021/bi00405a041. [DOI] [PubMed] [Google Scholar]
- Mathews A. J., Olson J. S., Renaud J. P., Tame J., Nagai K. The assignment of carbon monoxide association rate constants to the alpha and beta subunits in native and mutant human deoxyhemoglobin tetramers. J Biol Chem. 1991 Nov 15;266(32):21631–21639. [PubMed] [Google Scholar]
- Morris R. J., Gibson Q. H., Ikeda-Saito M., Yonetani T. Geminate combination of oxygen with iron-cobalt hybrid hemoglobins. J Biol Chem. 1984 Jun 10;259(11):6701–6703. [PubMed] [Google Scholar]
- Murray L. P., Hofrichter J., Henry E. R., Eaton W. A. Time-resolved optical spectroscopy and structural dynamics following photodissociation of carbonmonoxyhemoglobin. Biophys Chem. 1988 Feb;29(1-2):63–76. doi: 10.1016/0301-4622(88)87025-x. [DOI] [PubMed] [Google Scholar]
- Murray L. P., Hofrichter J., Henry E. R., Ikeda-Saito M., Kitagishi K., Yonetani T., Eaton W. A. The effect of quaternary structure on the kinetics of conformational changes and nanosecond geminate rebinding of carbon monoxide to hemoglobin. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2151–2155. doi: 10.1073/pnas.85.7.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noble R. W., Brunori M., Wyman J., Antonini E. Studies on the quantum yields of the photodissociation of carbon monoxide from hemoglobin and myoglobin. Biochemistry. 1967 Apr;6(4):1216–1222. doi: 10.1021/bi00856a035. [DOI] [PubMed] [Google Scholar]
- Petrich J. W., Poyart C., Martin J. L. Photophysics and reactivity of heme proteins: a femtosecond absorption study of hemoglobin, myoglobin, and protoheme. Biochemistry. 1988 May 31;27(11):4049–4060. doi: 10.1021/bi00411a022. [DOI] [PubMed] [Google Scholar]
- Saffran W. A., Gibson Q. H. Photodissociation of ligands from heme and heme proteins. Effect of temperature and organic phosphate. J Biol Chem. 1977 Nov 25;252(22):7955–7958. [PubMed] [Google Scholar]
- Samaja M., Rovida E., Niggeler M., Perrella M., Rossi-Bernardi L. The dissociation of carbon monoxide from hemoglobin intermediate. J Biol Chem. 1987 Apr 5;262(10):4528–4533. [PubMed] [Google Scholar]
- Sawicki C. A., Gibson Q. H. Dependence of the quantum efficiency for photolysis of carboxyhemoglobin on the degree of ligation. J Biol Chem. 1979 May 25;254(10):4058–4062. [PubMed] [Google Scholar]
- Sharma V. S., Bandyopadhyay D., Berjis M., Rifkind J., Boss G. R. Double-mixing kinetic studies of the reactions of monoliganded species of hemoglobin: alpha 2(CO)1 beta 2 and alpha 2 beta 2(CO)1. J Biol Chem. 1991 Dec 25;266(36):24492–24497. [PubMed] [Google Scholar]
- Sharma V. S. Kinetic studies on partially liganded species of carboxyhemoglobin: alpha 2 CO beta 2 and alpha 2 beta 2CO. J Biol Chem. 1988 Feb 15;263(5):2292–2298. [PubMed] [Google Scholar]
- Sharma V. S. Studies of human hemoglobin intermediates. The double mixing method for studying the reactions of the species Hb4(CO) and Hb4(CO)2. J Mol Biol. 1983 Jun 5;166(4):677–684. doi: 10.1016/s0022-2836(83)80292-7. [DOI] [PubMed] [Google Scholar]
- Xie X. L., Simon J. D. Protein conformational relaxation following photodissociation of CO from carbonmonoxymyoglobin: picosecond circular dichroism and absorption studies. Biochemistry. 1991 Apr 16;30(15):3682–3692. doi: 10.1021/bi00229a013. [DOI] [PubMed] [Google Scholar]