Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1992 Oct;63(4):1176–1181. doi: 10.1016/S0006-3495(92)81681-8

Phosphatidylcholine

cholesterol phase diagrams

Jenifer L Thewalt 1, Myer Bloom 1
PMCID: PMC1262255  PMID: 19431848

Abstract

Two mono-cis-unsaturated phosphatidylcholine (PC) lipid molecules, having very different gel-liquid crystalline phase transition temperatures as a consequence of the relative positions of the double bond, exhibit PC:cholesterol phase diagrams that are very similar to each other and to that obtained previously for a fully saturated PC:cholesterol mixture (Vist, M. R., and J. H. Davis. 1990. Biochemistry 29:451-464). This leads to the conjecture that PC:cholesterol membrane phase diagrams have a universal form which is relatively independent of the precise chemical structure of the PC molecule. One feature of this phase diagram is the observation over a wide temperature range of a fluid but highly conformationally ordered phase at bilayer concentrations of more than ∼25 mol% cholesterol. This `liquid ordered' phase is postulated to be the relevant physical state for many biological membranes, such as the plasma membrane of eukaryotic cells, that contain substantial amounts of cholesterol or equivalent sterols.

Full text

PDF
1176

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton P. G., Gunstone F. D. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. J Biol Chem. 1975 Jun 25;250(12):4470–4476. [PubMed] [Google Scholar]
  2. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  3. Davis J. H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. Biophys J. 1979 Sep;27(3):339–358. doi: 10.1016/S0006-3495(79)85222-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Guyer W., Bloch K. Phosphatidylcholine and cholesterol interactions in model membranes. Chem Phys Lipids. 1983 Nov;33(4):313–322. doi: 10.1016/0009-3084(83)90025-7. [DOI] [PubMed] [Google Scholar]
  5. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  6. Ipsen J. H., Mouritsen O. G., Zuckermann M. J. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys J. 1989 Oct;56(4):661–667. doi: 10.1016/S0006-3495(89)82713-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mabrey S., Mateo P. L., Sturtevant J. M. High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry. 1978 Jun 13;17(12):2464–2468. doi: 10.1021/bi00605a034. [DOI] [PubMed] [Google Scholar]
  8. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  9. Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES