Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1992 Dec;63(6):1493–1499. doi: 10.1016/S0006-3495(92)81734-4

Dielectric spectroscopy of plant protoplasts

Koji Asami 1, Tohru Yamaguchi 1
PMCID: PMC1262264  PMID: 19431864

Abstract

The relative permittivity and conductivity of the mesophyll protoplasts isolated from Brassica campestris leaves and Tulipa gesneriana petals were measured over a frequency range from 1kHz to 500 MHz.These protoplasts showed a broad dielectric dispersion, which was composed of three subdispersions, termed β1-, β2-, and β3-dispersion in increasing order of frequency.The three subdispersions were assigned to the Maxwell-Wagner dispersion caused by charging processes at the interfaces of the surface and internal membranes; the plasma membrane, the tonoplast, and the membranes of cytoplasmic organelles (e.g., chloroplasts, granules, etc) primarily contribute to the β1-, β2-, and β3-dispersion, respectively. The whole dielectric dispersion curve was satisfactorily interpreted in terms of a spherical cell model taking a large vacuole and cytoplasmic organelles into account. Using this model the capacitances of the plasma membranes and the tonoplasts were estimated to be 0.6-0.7 μF/cm2 and 0.9-1.0 μF/cm2, respectively.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asami K., Irimajiri A. Dielectric analysis of mitochondria isolated from rat liver. II. Intact mitochondria as simulated by a double-shell model. Biochim Biophys Acta. 1984 Dec 19;778(3):570–578. doi: 10.1016/0005-2736(84)90408-5. [DOI] [PubMed] [Google Scholar]
  2. Asami K., Irimajiri A., Hanai T., Shiraishi N., Utsumi K. Dielectric analysis of mitochondria isolated from rat liver. I. Swollen mitoplasts as simulated by a single-shell model. Biochim Biophys Acta. 1984 Dec 19;778(3):559–569. doi: 10.1016/0005-2736(84)90407-3. [DOI] [PubMed] [Google Scholar]
  3. Asami K., Takahashi Y., Takashima S. Dielectric properties of mouse lymphocytes and erythrocytes. Biochim Biophys Acta. 1989 Jan 17;1010(1):49–55. doi: 10.1016/0167-4889(89)90183-3. [DOI] [PubMed] [Google Scholar]
  4. Bernhardt J., Pauly H. Dielectric measurements of Nitellopsis obtusa cells with intracellular electrodes. Radiat Environ Biophys. 1974 Jun 10;11(2):91–109. doi: 10.1007/BF01559761. [DOI] [PubMed] [Google Scholar]
  5. Hanai T., Koizumi N., Irimajiri A. A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance. Biophys Struct Mech. 1975 Dec 19;1(4):285–294. doi: 10.1007/BF00537642. [DOI] [PubMed] [Google Scholar]
  6. Irimajiri A., Asami K., Ichinowatari T., Kinoshita Y. Passive electrical properties of the membrane and cytoplasm of cultured rat basophil leukemia cells. I. Dielectric behavior of cell suspensions in 0.01-500 MHz and its simulation with a single-shell model. Biochim Biophys Acta. 1987 Jan 26;896(2):203–213. doi: 10.1016/0005-2736(87)90181-7. [DOI] [PubMed] [Google Scholar]
  7. Irimajiri A., Doida Y., Hanai T., Inouye A. Passive electrical properties of cultured murine lymphoblast (L5178Y) with reference to its cytoplasmic membrane, nuclear envelope, and intracellular phases. J Membr Biol. 1978 Jan 18;38(3):209–232. doi: 10.1007/BF01871923. [DOI] [PubMed] [Google Scholar]
  8. Irimajiri A., Hanai T., Inouye A. A dielectric theory of "multi-stratified shell" model with its application to a lymphoma cell. J Theor Biol. 1979 May 21;78(2):251–269. doi: 10.1016/0022-5193(79)90268-6. [DOI] [PubMed] [Google Scholar]
  9. Irimajiri A., Hanai T., Inouye A. Evaluation of a conductometric method to determine the volume fraction of the suspensions of biomembrane-bounded particles. Experientia. 1975 Nov 15;31(11):1373–1375. doi: 10.1007/BF01945836. [DOI] [PubMed] [Google Scholar]
  10. Kaler K. V., Jones T. B. Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J. 1990 Feb;57(2):173–182. doi: 10.1016/S0006-3495(90)82520-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martinoia E., Schramm M. J., Kaiser G., Kaiser W. M., Heber U. Transport of anions in isolated barley vacuoles : I. Permeability to anions and evidence for a cl-uptake system. Plant Physiol. 1986 Apr;80(4):895–901. doi: 10.1104/pp.80.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PAULY H., SCHWAN H. P. Uber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale; Ein Modell fur das dielektrische Verhalten von Zellsuspensionen und von Proteinlösungen. Z Naturforsch B. 1959 Feb;14B(2):125–131. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES