Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Apr;64(4):1232–1242. doi: 10.1016/S0006-3495(93)81489-9

H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes.

X Yu 1, S Carroll 1, J L Rigaud 1, G Inesi 1
PMCID: PMC1262440  PMID: 8388268

Abstract

The Ca2+ transport adenosine triphosphatase of sarcoplasmic reticulum was reconstituted in unilamellar liposomes prepared by reverse-phase evaporation. The size of the resulting proteoliposomes was similar to that of native sarcoplasmic reticulum vesicles, but their protein content was much lower, with a protein/lipid ratio (wt/wt) of 1:40-160, as compared with 1:1 in the native membrane. The proteoliposomes sustained adenosine triphosphate-dependent Ca2+ uptake at rates proportional to the protein content (1-2 mumol Ca2+/mg protein/min), reaching asymptotic levels corresponding to a lumenal calcium concentration of 10-20 mM. The low permeability of the proteoliposomes permitted direct demonstration of Ca2+/H+ countertransport and electrogenicity by parallel measurements in the same experimental system. Countertransport of one H+ per one Ca2+ was demonstrated, and inhibition of the Ca2+ pump by lumenal alkalinization was relieved by the H+ ionophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. Consistent with the countertransport stoichiometry, net positive charge displacement was produced by Ca2+ transport, as revealed by a rapid oxonol VI absorption rise. The initial rise and the following steady-state level of oxonol absorption were highest when SO4(2-) was the prevalent anion and lowest in the presence of the lipophilic anion SCN-. The influence of anions was attributed to potential driven counterion compensation. The absorption rise was rapidly collapsed by addition of valinomycin in the presence of K+. Experimentation with Ca2+ and H+ ionophores was consistent with a primary role of Ca2+ and H+ in net charge displacement. The estimated value of the steady-state electrical potential observed under optimal conditions was approximately 50 mV and was accounted for by the estimated charge transfer associated with Ca2+ and H+ countertransport under the same conditions.

Full text

PDF
1232

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akerman K. E., Wolff C. H. Charge transfer during Ca2+ uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles as measured with oxanol VI. FEBS Lett. 1979 Apr 15;100(2):291–295. doi: 10.1016/0014-5793(79)80354-3. [DOI] [PubMed] [Google Scholar]
  2. Allgyer T. T., Wells M. A. Phospholipase D from savoy cabbage: purification and preliminary kinetic characterization. Biochemistry. 1979 Nov 27;18(24):5348–5353. doi: 10.1021/bi00591a014. [DOI] [PubMed] [Google Scholar]
  3. Apell H. J., Bersch B. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim Biophys Acta. 1987 Oct 16;903(3):480–494. doi: 10.1016/0005-2736(87)90055-1. [DOI] [PubMed] [Google Scholar]
  4. Bashford C. L., Chance B., Prince R. C. Oxonol dyes as monitors of membrane potential. Their behavior in photosynthetic bacteria. Biochim Biophys Acta. 1979 Jan 11;545(1):46–57. doi: 10.1016/0005-2728(79)90112-9. [DOI] [PubMed] [Google Scholar]
  5. Chiesi M., Inesi G. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles. Biochemistry. 1980 Jun 24;19(13):2912–2918. doi: 10.1021/bi00554a015. [DOI] [PubMed] [Google Scholar]
  6. Clarke D. M., Loo T. W., Inesi G., MacLennan D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature. 1989 Jun 8;339(6224):476–478. doi: 10.1038/339476a0. [DOI] [PubMed] [Google Scholar]
  7. Cornelius F., Møller J. V. Electrogenic pump current of sarcoplasmic reticulum Ca(2+)-ATPase reconstituted at high lipid/protein ratio. FEBS Lett. 1991 Jun 17;284(1):46–50. doi: 10.1016/0014-5793(91)80758-u. [DOI] [PubMed] [Google Scholar]
  8. Eisenrauch A., Bamberg E. Voltage-dependent pump currents of the sarcoplasmic reticulum Ca2(+)-ATPase in planar lipid membranes. FEBS Lett. 1990 Jul 30;268(1):152–156. doi: 10.1016/0014-5793(90)80996-v. [DOI] [PubMed] [Google Scholar]
  9. Eletr S., Inesi G. Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972 Sep 1;282(1):174–179. doi: 10.1016/0005-2736(72)90321-5. [DOI] [PubMed] [Google Scholar]
  10. Garret C., Brethes D., Chevallier J. Evidence of electrogenicity of the sarcoplasmic reticulum Ca2+ pump as measured with flow dialysis method. FEBS Lett. 1981 Dec 28;136(2):216–220. doi: 10.1016/0014-5793(81)80621-7. [DOI] [PubMed] [Google Scholar]
  11. Goldshleger R., Shahak Y., Karlish S. J. Electrogenic and electroneutral transport modes of renal Na/K ATPase reconstituted into proteoliposomes. J Membr Biol. 1990 Feb;113(2):139–154. doi: 10.1007/BF01872888. [DOI] [PubMed] [Google Scholar]
  12. Hill T. L., Inesi G. Equilibrium cooperative binding of calcium and protons by sarcoplasmic reticulum ATPase. Proc Natl Acad Sci U S A. 1982 Jul;79(13):3978–3982. doi: 10.1073/pnas.79.13.3978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Inesi G., Hill T. L. Calcium and proton dependence of sarcoplasmic reticulum ATPase. Biophys J. 1983 Nov;44(2):271–280. doi: 10.1016/S0006-3495(83)84299-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Inesi G., Kirtley M. E. Coupling of catalytic and channel function in the Ca2+ transport ATPase. J Membr Biol. 1990 Jun;116(1):1–8. doi: 10.1007/BF01871666. [DOI] [PubMed] [Google Scholar]
  15. Inesi G., Kurzmack M., Coan C., Lewis D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem. 1980 Apr 10;255(7):3025–3031. [PubMed] [Google Scholar]
  16. Inesi G., Scarpa A. [Fast kinetics of adenosine triphosphate dependent Ca 2+ uptake by fragmented sarcoplasmic reticulum]. Biochemistry. 1972 Feb 1;11(3):356–359. doi: 10.1021/bi00753a008. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Levy D., Seigneuret M., Bluzat A., Rigaud J. L. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. J Biol Chem. 1990 Nov 15;265(32):19524–19534. [PubMed] [Google Scholar]
  19. Madeira V. M. Alkalinization within sarcoplasmic reticulum during the uptake of calcium ions. Arch Biochem Biophys. 1979 Mar;193(1):22–27. doi: 10.1016/0003-9861(79)90003-1. [DOI] [PubMed] [Google Scholar]
  20. Madeira V. M. Proton gradient formation during transport of Ca2+ by sarcoplasmic reticulum. Arch Biochem Biophys. 1978 Jan 30;185(2):316–325. doi: 10.1016/0003-9861(78)90173-x. [DOI] [PubMed] [Google Scholar]
  21. Meissner G. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles. J Biol Chem. 1981 Jan 25;256(2):636–643. [PubMed] [Google Scholar]
  22. Morimoto T., Kasai M. Reconstitution of sarcoplasmic reticulum Ca2+-ATPase vesicles lacking ion channels and demonstration of electrogenicity of Ca2+-pump. J Biochem. 1986 Apr;99(4):1071–1080. doi: 10.1093/oxfordjournals.jbchem.a135571. [DOI] [PubMed] [Google Scholar]
  23. Nishie I., Anzai K., Yamamoto T., Kirino Y. Measurement of steady-state Ca2+ pump current caused by purified Ca2(+)-ATPase of sarcoplasmic reticulum incorporated into a planar bilayer lipid membrane. J Biol Chem. 1990 Feb 15;265(5):2488–2491. [PubMed] [Google Scholar]
  24. Pickart C. M., Jencks W. P. Energetics of the calcium-transporting ATPase. J Biol Chem. 1984 Feb 10;259(3):1629–1643. [PubMed] [Google Scholar]
  25. Richard P., Rigaud J. L., Gräber P. Reconstitution of CF0F1 into liposomes using a new reconstitution procedure. Eur J Biochem. 1990 Nov 13;193(3):921–925. doi: 10.1111/j.1432-1033.1990.tb19418.x. [DOI] [PubMed] [Google Scholar]
  26. Rigaud J. L., Bluzat A., Buschlen S. Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation. Biochem Biophys Res Commun. 1983 Mar 16;111(2):373–382. doi: 10.1016/0006-291x(83)90316-9. [DOI] [PubMed] [Google Scholar]
  27. Rigaud J. L., Paternostre M. T., Bluzat A. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry. 1988 Apr 19;27(8):2677–2688. doi: 10.1021/bi00408a007. [DOI] [PubMed] [Google Scholar]
  28. SINGLETON W. S., GRAY M. S., BROWN M. L., WHITE J. L. CHROMATOGRAPHICALLY HOMOGENEOUS LECITHIN FROM EGG PHOSPHOLIPIDS. J Am Oil Chem Soc. 1965 Jan;42:53–56. doi: 10.1007/BF02558256. [DOI] [PubMed] [Google Scholar]
  29. Sumbilla C., Cantilina T., Collins J. H., Malak H., Lakowicz J. R., Inesi G. Structural perturbation of the transmembrane region interferes with calcium binding by the Ca2+ transport ATPase. J Biol Chem. 1991 Jul 5;266(19):12682–12689. [PubMed] [Google Scholar]
  30. Ueno T., Sekine T. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake. J Biochem. 1981 Apr;89(4):1247–1252. [PubMed] [Google Scholar]
  31. Wakabayashi S., Ogurusu T., Shigekawa M. Factors influencing calcium release from the ADP-sensitive phosphoenzyme intermediate of the sarcoplasmic reticulum ATPase. J Biol Chem. 1986 Jul 25;261(21):9762–9769. [PubMed] [Google Scholar]
  32. Watanabe T., Lewis D., Nakamoto R., Kurzmack M., Fronticelli C., Inesi G. Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1981 Nov 10;20(23):6617–6625. doi: 10.1021/bi00526a015. [DOI] [PubMed] [Google Scholar]
  33. Yamaguchi M., Kanazawa T. Coincidence of H+ binding and Ca2+ dissociation in the sarcoplasmic reticulum Ca-ATPase during ATP hydrolysis. J Biol Chem. 1985 Apr 25;260(8):4896–4900. [PubMed] [Google Scholar]
  34. Yamaguchi M., Kanazawa T. Protonation of the sarcoplasmic reticulum Ca-ATPase during ATP hydrolysis. J Biol Chem. 1984 Aug 10;259(15):9526–9531. [PubMed] [Google Scholar]
  35. Zimniak P., Racker E. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1978 Jul 10;253(13):4631–4637. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES