Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Apr;64(4):1344–1353. doi: 10.1016/S0006-3495(93)81464-4

Molecular dynamics study of the lauryl alcohol-laurate model bilayer

T Fukada 1, S Okazaki 1, I Okada 1
PMCID: PMC1262452  PMID: 19431888

Abstract

Molecular dynamics (MD) calculation of the fluid phase lauryl alcohol-laurate bilayer has been executed based on Berendsen's surface-constrained model. Structure and dynamics of the bilayer have been investigated by analyzing the trajectories of the chain configurations. Newly defined correlation functions as well as the conventional ones showed that the tilt and bend of the chain play an important role in the bilayer structure, including behavior of the order parameter. Interpenetration of the layers as well as formation of collectively ordered small domains was also found. The calculated lateral diffusion coefficient was in satisfactory agreement with the experimental one. Successive jumps of the head group, rather than the hydrodynamic continuous motion, were observed. Between the jumps, the molecule librated in a local site. Time-dependent autocorrelation functions showed evidence of several different modes of the chain motion, whose time constant ranged from a few tenths of picoseconds to several tens of picoseconds.

Full text

PDF
1344

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  2. Cameron D. G., Casal H. L., Mantsch H. H. Characterization of the pretransition in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine by Fourier transform infrared spectroscopy. Biochemistry. 1980 Aug 5;19(16):3665–3672. doi: 10.1021/bi00557a005. [DOI] [PubMed] [Google Scholar]
  3. Gibson K. D., Scheraga H. A. Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease S-peptide. Proc Natl Acad Sci U S A. 1967 Aug;58(2):420–427. doi: 10.1073/pnas.58.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gruen D. W. A statistical mechanical model of the lipid bilayer above its phase transition. Biochim Biophys Acta. 1980 Jan 25;595(2):161–183. doi: 10.1016/0005-2736(80)90081-4. [DOI] [PubMed] [Google Scholar]
  5. Herbette L., Napolitano C. A., McDaniel R. V. Direct determination of the calcium profile structure for dipalmitoyllecithin multilayers using neutron diffraction. Biophys J. 1984 Dec;46(6):677–685. doi: 10.1016/S0006-3495(84)84066-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Honig C. R., Reddy Y. S. Calcium, tropomyosin, and actomyosin as controls of calcium binding by troponin. Recent Adv Stud Cardiac Struct Metab. 1975;8:233–240. [PubMed] [Google Scholar]
  7. Marcelja S. Chain ordering in liquid crystals. II. Structure of bilayer membranes. Biochim Biophys Acta. 1974 Oct 29;367(2):165–176. doi: 10.1016/0005-2736(74)90040-6. [DOI] [PubMed] [Google Scholar]
  8. Meraldi J. P., Schlitter J. A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. A. Theory. Biochim Biophys Acta. 1981 Jul 20;645(2):183–192. doi: 10.1016/0005-2736(81)90189-9. [DOI] [PubMed] [Google Scholar]
  9. Meraldi J. P., Schlitter J. A statistical mechanical treatment of fatty acyl chain order in phospholipid bilayers and correlation with experimental data. B. Dipalmitoyl-3-sn-phosphatidylcholine. Biochim Biophys Acta. 1981 Jul 20;645(2):193–210. doi: 10.1016/0005-2736(81)90190-5. [DOI] [PubMed] [Google Scholar]
  10. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977 Aug;10(3):353–418. doi: 10.1017/s0033583500002948. [DOI] [PubMed] [Google Scholar]
  11. Seelig J., Niederberger W. Two pictures of a lipid bilayer. A comparison between deuterium label and spin-label experiments. Biochemistry. 1974 Apr 9;13(8):1585–1588. doi: 10.1021/bi00705a005. [DOI] [PubMed] [Google Scholar]
  12. Seelig J., Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980 Feb;13(1):19–61. doi: 10.1017/s0033583500000305. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES