Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1993 Jun;64(6):1908–1921. doi: 10.1016/S0006-3495(93)81562-5

Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential.

M Toner 1, E G Cravalho 1, J Stachecki 1, T Fitzgerald 1, R G Tompkins 1, M L Yarmush 1, D R Armant 1
PMCID: PMC1262525  PMID: 8369414

Abstract

A thermodynamic model was used to evaluate and optimize a rapid three-step nonequilibrium freezing protocol for one-cell mouse embryos in the absence of cryoprotectants (CPAs) that avoided lethal intracellular ice formation (IIF). Biophysical parameters of one-cell mouse embryos were determined at subzero temperatures using cryomicroscopic investigations (i.e., the water permeability of the plasma membrane, its temperature dependence, and the parameters for heterogeneous IIF). The parameters were then incorporated into the thermodynamic model, which predicted the likelihood of IIF. Model predictions showed that IIF could be prevented at a cooling rate of 120 degrees C/min when a 5-min holding period was inserted at -10 degrees C to assure cellular dehydration. This predicted freezing protocol, which avoided IIF in the absence of CPAs, was two orders of magnitude faster than conventional embryo cryopreservation cooling rates of between 0.5 and 1 degree C/min. At slow cooling rates, embryos predominantly follow the equilibrium phase diagram and do not undergo IIF, but mechanisms other than IIF (e.g., high electrolyte concentrations, mechanical effects, and others) cause cellular damage. We tested the predictions of our thermodynamic model using a programmable freezer and confirmed the theoretical predictions. The membrane integrity of one-cell mouse embryos, as assessed by fluorescein diacetate retention, was approximately 80% after freezing down to -45 degrees C by the rapid nonequilibrium protocol derived from our model. The fact that embryos could be rapidly frozen in the absence of CPAs without damage to the plasma membrane as assessed by fluorescein diacetate retention is a new and exciting finding. Further refinements of this protocol is necessary to retain the developmental competence of the embryos.

Full text

PDF
1908

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Damien M., Luciano A. A., Peluso J. J. Propanediol-induced alterations in membrane integrity, metabolism and developmental potential of mouse zygotes. Hum Reprod. 1989 Nov;4(8):969–974. doi: 10.1093/oxfordjournals.humrep.a137022. [DOI] [PubMed] [Google Scholar]
  2. Farrant J., Knight S. C., McGann L. E., O'Brien J. Optimal recovery of lymphocytes and tissue culture cells following rapid cooling. Nature. 1974 May 31;249(456):452–453. doi: 10.1038/249452a0. [DOI] [PubMed] [Google Scholar]
  3. Friedler S., Giudice L. C., Lamb E. J. Cryopreservation of embryos and ova. Fertil Steril. 1988 May;49(5):743–764. doi: 10.1016/s0015-0282(16)59879-3. [DOI] [PubMed] [Google Scholar]
  4. Johnson M. H., Pickering S. J. The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte. Development. 1987 Jun;100(2):313–324. doi: 10.1242/dev.100.2.313. [DOI] [PubMed] [Google Scholar]
  5. LOVELOCK J. E. The mechanism of the protective action of glycerol against haemolysis by freezing and thawing. Biochim Biophys Acta. 1953 May;11(1):28–36. doi: 10.1016/0006-3002(53)90005-5. [DOI] [PubMed] [Google Scholar]
  6. LUYET B., KEANE J., Jr A critical temperature range apparently characterized by sensitivity of bull semen to high freezing velocity. Biodynamica. 1955 Dec;7(149-152):281–292. [PubMed] [Google Scholar]
  7. Leibo S. P. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol. 1980;53(3):179–188. doi: 10.1007/BF01868823. [DOI] [PubMed] [Google Scholar]
  8. Levin R. L., Miller T. W. An optimum method for the introduction or removal of permeable cryoprotectants: isolated cells. Cryobiology. 1981 Feb;18(1):32–48. doi: 10.1016/0011-2240(81)90004-3. [DOI] [PubMed] [Google Scholar]
  9. Levran D., Dor J., Rudak E., Nebel L., Ben-Shlomo I., Ben-Rafael Z., Mashiach S. Pregnancy potential of human oocytes--the effect of cryopreservation. N Engl J Med. 1990 Oct 25;323(17):1153–1156. doi: 10.1056/NEJM199010253231701. [DOI] [PubMed] [Google Scholar]
  10. Lynch D. V., Lin T. T., Myers S. P., Leibo S. P., Macintyre R. J., Pitt R. E., Steponkus P. L. A two-step method for permeabilization of Drosophila eggs. Cryobiology. 1989 Oct;26(5):445–452. doi: 10.1016/0011-2240(89)90069-2. [DOI] [PubMed] [Google Scholar]
  11. Lynch R. D., Schneeberger E. E., Geyer R. P. Alterations in L fibroblast lipid metabolism and morphology during choline deprivation. Exp Cell Res. 1979 Aug;122(1):103–113. doi: 10.1016/0014-4827(79)90565-2. [DOI] [PubMed] [Google Scholar]
  12. MAZUR P. KINETICS OF WATER LOSS FROM CELLS AT SUBZERO TEMPERATURES AND THE LIKELIHOOD OF INTRACELLULAR FREEZING. J Gen Physiol. 1963 Nov;47:347–369. doi: 10.1085/jgp.47.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mazur P. Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys. 1990 Aug;17(1):53–92. doi: 10.1007/BF02989804. [DOI] [PubMed] [Google Scholar]
  14. Mazur P. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology. 1977 Jun;14(3):251–272. doi: 10.1016/0011-2240(77)90175-4. [DOI] [PubMed] [Google Scholar]
  15. McGann L. E., Farrant J. Survival of tissue culture cells frozen by a two-step procedure to -196 degrees C. I. Holding temperature and time. Cryobiology. 1976 Jun;13(3):261–268. doi: 10.1016/0011-2240(76)90106-1. [DOI] [PubMed] [Google Scholar]
  16. Myers S. P., Pitt R. E., Lynch D. V., Steponkus P. L. Characterization of intracellular ice formation in Drosophila melanogaster embryos. Cryobiology. 1989 Oct;26(5):472–484. doi: 10.1016/0011-2240(89)90071-0. [DOI] [PubMed] [Google Scholar]
  17. Noto V., Campo R., Roziers P., Gordts S. Fluorescein diacetate assessment of embryo viability after ultrarapid freezing of human multipronucleate embryos. Fertil Steril. 1991 Jun;55(6):1171–1175. doi: 10.1016/s0015-0282(16)54370-2. [DOI] [PubMed] [Google Scholar]
  18. Pitt R. E., Myers S. P., Lin T. T., Steponkus P. L. Subfreezing volumetric behavior and stochastic modeling of intracellular ice formation in Drosophila melanogaster embryos. Cryobiology. 1991 Feb;28(1):72–86. doi: 10.1016/0011-2240(91)90009-d. [DOI] [PubMed] [Google Scholar]
  19. Rall W. F., Fahy G. M. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature. 1985 Feb 14;313(6003):573–575. doi: 10.1038/313573a0. [DOI] [PubMed] [Google Scholar]
  20. Rall W. F., Mazur P., McGrath J. J. Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide. Biophys J. 1983 Jan;41(1):1–12. doi: 10.1016/S0006-3495(83)84399-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwartz G. J., Diller K. R. Analysis of the water permeability of human granulocytes at subzero temperatures in the presence of extracellular ice. J Biomech Eng. 1983 Nov;105(4):360–366. doi: 10.1115/1.3138433. [DOI] [PubMed] [Google Scholar]
  22. Shabana M., McGrath J. J. Cryomicroscope investigation and thermodynamic modeling of the freezing of unfertilized hamster ova. Cryobiology. 1988 Aug;25(4):338–354. doi: 10.1016/0011-2240(88)90042-9. [DOI] [PubMed] [Google Scholar]
  23. TAYLOR A. C. The physical state transition in the freezing of living cells. Ann N Y Acad Sci. 1960 Apr 13;85:595–609. doi: 10.1111/j.1749-6632.1960.tb49985.x. [DOI] [PubMed] [Google Scholar]
  24. Toner M., Cravalho E. G., Armant D. R. Water transport and estimated transmembrane potential during freezing of mouse oocytes. J Membr Biol. 1990 May;115(3):261–272. doi: 10.1007/BF01868641. [DOI] [PubMed] [Google Scholar]
  25. Toner M., Cravalho E. G., Karel M., Armant D. R. Cryomicroscopic analysis of intracellular ice formation during freezing of mouse oocytes without cryoadditives. Cryobiology. 1991 Feb;28(1):55–71. doi: 10.1016/0011-2240(91)90008-c. [DOI] [PubMed] [Google Scholar]
  26. Toupin C. J., Le Maguer M., McGann L. E. Permeability of human granulocytes to dimethyl sulfoxide. Cryobiology. 1989 Oct;26(5):422–430. doi: 10.1016/0011-2240(89)90067-9. [DOI] [PubMed] [Google Scholar]
  27. Trounson A. Preservation of human eggs and embryos. Fertil Steril. 1986 Jul;46(1):1–12. doi: 10.1016/s0015-0282(16)49448-3. [DOI] [PubMed] [Google Scholar]
  28. Van der Elst J., Van den Abbeel E., Jacobs R., Wisse E., Van Steirteghem A. Effect of 1,2-propanediol and dimethylsulphoxide on the meiotic spindle of the mouse oocyte. Hum Reprod. 1988 Nov;3(8):960–967. doi: 10.1093/oxfordjournals.humrep.a136826. [DOI] [PubMed] [Google Scholar]
  29. Walter C. A., Knight S. C., Farrant J. Ultrastructural appearance of freeze-substituted lymphocytes frozen by interrupting rapid cooling with a period at--26 degrees C. Cryobiology. 1975 Apr;12(2):103–109. doi: 10.1016/s0011-2240(75)80001-0. [DOI] [PubMed] [Google Scholar]
  30. Whittingham D. G., Leibo S. P., Mazur P. Survival of mouse embryos frozen to -196 degrees and -269 degrees C. Science. 1972 Oct 27;178(4059):411–414. [PubMed] [Google Scholar]
  31. Wilmut I. The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci II. 1972 Nov 22;11(22):1071–1079. doi: 10.1016/0024-3205(72)90215-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES