Abstract
1. A higher concentration of polyamines (spermine, spermidine, putrescine and cadaverine) during development of the chick embryo was observed between the fifth and tenth day of incubation; the concentrations of nucleic acids showed a parallel increase. 2. When spermine (5μmoles) was injected into the yolk sac of embryos at the tenth day of incubation, a high amine-oxidase activity was noted and the spermine and spermidine concentrations were decreased; also, there was a remarkable decrease in RNA and DNA concentrations and a parallel increase in that of total free nucleotides. 3. On the other hand, when iproniazid (16μmoles) was injected there was an inhibition of amine-oxidase activity and a similar increase in the concentrations of spermine and spermidine and of nucleic acids, whereas that of total free nucleotides decreased. 4. Another group of embryos injected with spermine and iproniazid together showed a remarkable increase in spermine and spermidine concentrations and a parallel increase in those of RNA and DNA, and a decrease in that of total free nucleotides.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DUBIN D. T., ROSENTHAL S. M. The acetylation of polyamines in Escherichia coli. J Biol Chem. 1960 Mar;235:776–782. [PubMed] [Google Scholar]
- FISCHER F. G., BOHN H. Uber die Bestimmung von Spermin, Spermidin und anderen biogenen Aminen nach papierelektrophoretischer Abtrennung und ibre Mengenverhältnisse in tierischen Organen. Hoppe Seylers Z Physiol Chem. 1957;308(2-4):108–115. [PubMed] [Google Scholar]
- HERBST E. J., SNELL E. E. Putrescine and related compounds as growth factors for Hemophilus parainfluenzae 7991. J Biol Chem. 1949 Nov;181(1):47–54. [PubMed] [Google Scholar]
- HIRSCH J. G., DUBOS R. J. The effect of spermine on tubercle bacilli. J Exp Med. 1952 Feb;95(2):191–208. doi: 10.1084/jem.95.2.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HURLBERT R. B., SCHMITZ H., BRUMM A. F., POTTER V. R. Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J Biol Chem. 1954 Jul;209(1):23–39. [PubMed] [Google Scholar]
- KRAKOW J. S. RIBONUCLEIC ACID POLYMERASE OF AZOTOBACTER VINELANDII. III. EFFECT OF POLYAMINES. Biochim Biophys Acta. 1963 Aug 20;72:566–571. [PubMed] [Google Scholar]
- MAGASANIK B., VISCHER E., DONIGER R., ELSON D., CHARGAFF E. The separation and estimation of ribonucleotides in minute quantities. J Biol Chem. 1950 Sep;186(1):37–50. [PubMed] [Google Scholar]
- MORUZZI G., CALDARERA C. M. OCCURRENCE OF POLYAMINES IN THE GERMS OF CEREALS. Arch Biochem Biophys. 1964 Apr;105:209–210. doi: 10.1016/0003-9861(64)90256-5. [DOI] [PubMed] [Google Scholar]
- ROSENTHAL S. M., TABOR C. W. The pharmacology of spermine and spermidine; distribution and excretion. J Pharmacol Exp Ther. 1956 Feb;116(2):131–138. [PubMed] [Google Scholar]
- TABOR H., ROSENTHAL S. M., TABOR C. W. The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem. 1958 Oct;233(4):907–914. [PubMed] [Google Scholar]
- TABOR H. The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry. 1962 May 25;1:496–501. doi: 10.1021/bi00909a021. [DOI] [PubMed] [Google Scholar]
- TURNER R. B., LANSFORD E. M., Jr, RAVEL J. M., SHIVE W. A metabolic relationship of spermine to folinic acid and thymidine. Biochemistry. 1963 Jan-Feb;2:163–167. doi: 10.1021/bi00901a029. [DOI] [PubMed] [Google Scholar]
