Abstract
1. A study has been made of the dependence on the concentrations of internal Na+ and external K+ of lactate and phosphate production in human erythrocytes. 2. Lactate production was stimulated by Na+ and K+ but only when they were internal and external respectively. The stimulation was counteracted by ouabain. The production of phosphate was affected in the same way. 3. There is a quantitative correlation between these effects and those previously found for cation movements and the membrane adenosine triphosphatase. 4. It is concluded that the rate of energy production in glycolysis is partly controlled by the magnitude of active transport; the extent of this regulation is shown to vary from 25 to 75% of a basal rate that is independent of active transport. 5. The activity of the membrane adenosine triphosphatase was also compared with rates of Na+ and K+ transport. The latter were varied by altering the concentrations of internal Na+ and external K+, and by inhibiting with ouabain. 6. A threefold variation of active transport rate was accompanied by a parallel change in the membrane adenosine-triphosphatase activity. The results show a constant stoicheiometry for the number of ions moved/mol. of ATP hydrolysed, independent of the electrochemical gradient against which the ions were moved. 7. Calculations show that the amount of ATP hydrolysed would provide enough energy for the osmotic work. The results are discussed in relation to possible mechanisms for active transport.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BARTLETT G. R., SHAFER A. W. Phosphorylated carbohydrate intermediates of the human erythrocyte during storage in acid citrate dextrose. II. Effect of the addition of inosine late in storage. J Clin Invest. 1961 Jul;40:1185–1193. doi: 10.1172/JCI104348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BILODEAU F., ELLIOTT K. A. The influence of drugs and potassium on respiration and potassium accumulation by brain tissue. Can J Biochem Physiol. 1963 Mar;41:779–792. [PubMed] [Google Scholar]
- BOLINGBROKE V., MAIZELS M. Calcium ions and the permeability of human erythrocytes. J Physiol. 1959 Dec;149:563–585. doi: 10.1113/jphysiol.1959.sp006361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. Energy of adenosine triphosphate. Nature. 1958 Jun 7;181(4623):1594–1595. doi: 10.1038/1811594a0. [DOI] [PubMed] [Google Scholar]
- CLARKSON E. M., MAIZELS M. Sodium transfer in human and chicken erythrocytes. J Physiol. 1955 Sep 28;129(3):476–503. doi: 10.1113/jphysiol.1955.sp005372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davson H. Studies on the permeability of erythrocytes: The effect of reducing the salt content of the medium surrounding the cell. Biochem J. 1939 Mar;33(3):389–401. doi: 10.1042/bj0330389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELSHOVE A., VAN ROSSUMG NET MOVEMENTS OF SODIUM AND POTASSIUM, AND THEIR RELATION TO RESPIRATION, IN SLICES OF RAT LIVER INCUBATED IN VITRO. J Physiol. 1963 Oct;168:531–553. doi: 10.1113/jphysiol.1963.sp007206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLYNN F., MAIZELS M. Cation control in human erythrocytes. J Physiol. 1949 Dec;110(3-4):301–318. doi: 10.1113/jphysiol.1949.sp004440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GABRIO B. W., HENNESSEY M., THOMASSON J., FINCH C. A. Erythrocyte preservation. IV. In vitro reversibility of the storage lesion. J Biol Chem. 1955 Jul;215(1):357–367. [PubMed] [Google Scholar]
- GILL T. J., 3rd, GOLD G. L., SOLOMON A. K. The kinetics of cardiac glycoside inhibition of potassium transport in human erythrocytes. J Gen Physiol. 1956 Nov 20;40(2):327–350. doi: 10.1085/jgp.40.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. THE ACTION OF CARDIAC GLYCOSIDES ON ION MOVEMENTS. Pharmacol Rev. 1964 Dec;16:381–407. [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gárdos G. Connection between membrane adenosine triphosphatase activity and potassium transport in erythrocyte ghosts. Experientia. 1964 Jul 15;20(7):387–387. doi: 10.1007/BF02147979. [DOI] [PubMed] [Google Scholar]
- HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Phosphatidic acid metabolism and active transport of sodium. Fed Proc. 1963 Jan-Feb;22:8–18. [PubMed] [Google Scholar]
- JACOB H. S., JANDL J. H. INCREASED CELL MEMBRANE PERMEABILITY IN THE PATHOGENESIS OF HEREDITARY SPHEROCYTOSIS. J Clin Invest. 1964 Aug;43:1704–1720. doi: 10.1172/JCI105046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JONES V. D., NORRIS J. L., LANDON E. J. Interaction of a ratkidney endoplasmic reticulum fraction with glycolytic enzymes. Biochim Biophys Acta. 1963 May 14;71:277–284. doi: 10.1016/0006-3002(63)91082-5. [DOI] [PubMed] [Google Scholar]
- JUDAH J. D., AHMED K. THE BIOCHEMISTRY OF SODIUM TRANSPORT. Biol Rev Camb Philos Soc. 1964 May;39:160–193. doi: 10.1111/j.1469-185x.1964.tb00953.x. [DOI] [PubMed] [Google Scholar]
- Jardetzky O., Snell F. M. THEORETICAL ANALYSIS OF TRANSPORT PROCESSES IN LIVING SYSTEMS. Proc Natl Acad Sci U S A. 1960 May;46(5):616–622. doi: 10.1073/pnas.46.5.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAHN J. B., Jr The entry of rubidium into human erythrocytes. J Pharmacol Exp Ther. 1962 May;136:197–204. [PubMed] [Google Scholar]
- KATCHALSKY A., KEDEMO Thermodynamics of flow processes in biological systems. Biophys J. 1962 Mar;2(2 Pt 2):53–78. doi: 10.1016/s0006-3495(62)86948-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KOSHLAND D. E., Jr, YANKEELOV J. A., Jr, THOMA J. A. Specificity and catalytic power in enzyme action. Fed Proc. 1962 Nov-Dec;21:1031–1038. [PubMed] [Google Scholar]
- KREBS H. A., HEMS R. Some reactions of adenosine and inosine phosphates in animal tissues. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):172–180. doi: 10.1016/0006-3002(53)90136-x. [DOI] [PubMed] [Google Scholar]
- KUBLER W., BRETSCHNEIDER H. J. [The permeation of adenosine through the erythrocyte membrane in dogs]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:141–149. [PubMed] [Google Scholar]
- KUNZ H. A., SULSER F. Uber die Hemmung des aktiven Kationentransportes durch Herzglykoside. Experientia. 1957 Sep 15;13(9):365–367. doi: 10.1007/BF02179170. [DOI] [PubMed] [Google Scholar]
- MINAKAMI S., KAKINUMA K., YOSHIKAWA H. THE CONTROL OF ERYTHROCYTE GLYCOLYSIS BY ACTIVE CATION TRANSPORT. Biochim Biophys Acta. 1964 Aug 19;90:434–436. doi: 10.1016/0304-4165(64)90219-3. [DOI] [PubMed] [Google Scholar]
- MOSZYNSKI J. R., HOSHIKO T., LINDLEY B. D. NOTE ON THE CURIE PRINCIPLE. Biochim Biophys Acta. 1963 Nov 29;75:447–449. doi: 10.1016/0006-3002(63)90635-8. [DOI] [PubMed] [Google Scholar]
- MURPHY J. R. Erythrocyte metabolism. V. Active cation transport and glycolysis. J Lab Clin Med. 1963 Apr;61:567–577. [PubMed] [Google Scholar]
- Maizels M. The permeation of erythrocytes by cations. Biochem J. 1935 Aug;29(8):1970–1982. doi: 10.1042/bj0291970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConaghey P. D., Maizels M. Cation exchanges of lactose-treated human red cells. J Physiol. 1962 Aug;162(3):485–509. doi: 10.1113/jphysiol.1962.sp006946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newsholme E. A., Randle P. J. Regulation of glucose uptake by muscle. 7. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes, starvation, hypophysectomy and adrenalectomy, on the concentrations of hexose phosphates, nucleotides and inorganic phosphate in perfused rat heart. Biochem J. 1964 Dec;93(3):641–651. doi: 10.1042/bj0930641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PASSONNEAU J. V., LOWRY O. H. Phosphofructokinase and the Pasteur effect. Biochem Biophys Res Commun. 1962 Feb 20;7:10–15. doi: 10.1016/0006-291x(62)90134-1. [DOI] [PubMed] [Google Scholar]
- POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
- POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
- PRANKERD T. A. Chemical changes in stored blood, with observations on the effects of adenosine. Biochem J. 1956 Oct;64(2):209–213. doi: 10.1042/bj0640209a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RUBINSTEIN D., KASHKET S., DENSTEDT O. F. Studies on the preservation of blood. IV. The influence of adenosine on the glycolytic activity of the erythrocyte during storage at 4 degrees C. Can J Biochem Physiol. 1956 Jan;34(1):61–74. [PubMed] [Google Scholar]
- SCHATZMANN H. J. Herzglykoside als Hemmstoffe für den aktiven Kalium- und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11(4):346–354. [PubMed] [Google Scholar]
- SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
- SHAW T. I. Potassium movements in washed erythrocytes. J Physiol. 1955 Sep 28;129(3):464–475. doi: 10.1113/jphysiol.1955.sp005371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SZENTKIRALYI E. M. Changes in the nucleotides of the cross-striated muscle after freezing. Arch Biochem Biophys. 1957 Apr;67(2):298–301. doi: 10.1016/0003-9861(57)90283-7. [DOI] [PubMed] [Google Scholar]
- Schatzmann H. J. Intracellular phosphate release by the Na+-K+-activated membrane ATPase. Experientia. 1964 Oct 15;20(10):551–552. doi: 10.1007/BF02150284. [DOI] [PubMed] [Google Scholar]
- UTTER M. F. Mechanism of inhibition of anaerobic glycolysis of brain by sodium ions. J Biol Chem. 1950 Aug;185(2):499–517. [PubMed] [Google Scholar]
- WHITTAM R. Active cation transport as a pace-maker of respiration. Nature. 1961 Aug 5;191:603–604. doi: 10.1038/191603a0. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. Potassium movements and ATP in human red cells. J Physiol. 1958 Mar 11;140(3):479–497. [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R. The dependence of the respiration of brain cortex on active cation transport. Biochem J. 1962 Jan;82:205–212. doi: 10.1042/bj0820205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R. The high permeability of human red cells to adenine and hypoxanthine and their ribosides. J Physiol. 1960 Dec;154:614–623. doi: 10.1113/jphysiol.1960.sp006601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]
- WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittam R., Ager M. E. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem J. 1964 Nov;93(2):337–348. doi: 10.1042/bj0930337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZERAHN K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol Scand. 1956 May 31;36(4):300–318. doi: 10.1111/j.1748-1716.1956.tb01327.x. [DOI] [PubMed] [Google Scholar]