Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Oct;97(1):284–297. doi: 10.1042/bj0970284

Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources

E S Polakis 1, W Bartley 1
PMCID: PMC1264573  PMID: 16749116

Abstract

1. The activities of the enzymes of the citric acid cycle, the glyoxylate by-pass and some other enzymes acting on the substrates of these cycles have been measured at the pH of the yeast cell during the aerobic growth of yeast on different carbon sources and in different growth media. 2. Sugars induced an anaerobic type of metabolism as measured by ethanol production. Glucose was much more effective in inducing the anaerobic pathways than was galactose. The production of ethanol by cells grown on pyruvate was very small. 3. Glucose was also a more effective repressor than was galactose of the citric acid-cycle enzymes but both were equally effective in repressing almost completely the enzymes of the glyoxylate by-pass. 4. Disappearance of the sugars from the growth medium resulted in an increase in the activities of the enzymes of the citric acid cycle and in the appearance of substantial activities of the enzymes of the glyoxylate cycle. By contrast, the activities of purely biosynthetic enzymes (glutamate–oxaloacetate transaminase, NADP+-linked glutamate dehydrogenase) and of pyruvate decarboxylase were decreased. 5. The 2-oxoglutarate-oxidase system was found to be the least active enzyme of the citric acid cycle. 6. The regulatory control at the levels of pyruvate and acetaldehyde and the control of the citric acid cycle are discussed.

Full text

PDF
284

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALVAREZ A., VANDERWINKEL E., WIAME J. M. L'oxydation de l'acide pyruvique chez la levure. Biochim Biophys Acta. 1958 May;28(2):333–341. doi: 10.1016/0006-3002(58)90480-3. [DOI] [PubMed] [Google Scholar]
  2. ASHWORTH J. M., KORNBERG H. L. FINE CONTROL OF THE GLYOXYLATE CYCLE BY ALLOSTERIC INHIBITION OF ISOCITRATE LYASE. Biochim Biophys Acta. 1963 Jul 9;73:519–522. doi: 10.1016/0006-3002(63)90457-8. [DOI] [PubMed] [Google Scholar]
  3. BONNICHSEN R. K., THEORELL H. An enzymatic method for the microdetermination of ethanol. Scand J Clin Lab Invest. 1951;3(1):58–62. doi: 10.3109/00365515109060572. [DOI] [PubMed] [Google Scholar]
  4. CANNATA J. J., STOPPANI A. O. Phosphopyruvate carboxylase from baker's yeast. I. Isolation, purification, and characterization. J Biol Chem. 1963 Apr;238:1196–1207. [PubMed] [Google Scholar]
  5. DEMOSS J. A., SWIM H. E. Quantitative aspects of the tricarboxylic acid cycle in baker's yeast. J Bacteriol. 1957 Oct;74(4):445–451. doi: 10.1128/jb.74.4.445-451.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EATON N. R., KLEIN H. P. Studies on the aerobic degradation of glucose by Saccharomyces cerevisiae. Biochem J. 1957 Nov;67(3):373–381. doi: 10.1042/bj0670373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HIERHOLZER G., HOLZER H. REPRESSION DER SYNTHESE VON DPN-ABHAENGIGER GLUTAMINSAEUREDEHYDROGENASE IN SACCHAROMYCES CEREVISIAE DURCH AMMONIUMIONEN. Biochem Z. 1963 Dec 3;339:175–185. [PubMed] [Google Scholar]
  8. HIRSCH H. A comparative study of aconitase, fumarase, and DPN-linked isocitric dehydrogenase in normal and respiration-deficient yeast. Biochim Biophys Acta. 1952 Dec;9(6):674–686. doi: 10.1016/0006-3002(52)90229-1. [DOI] [PubMed] [Google Scholar]
  9. HOLZER H., GERLACH U., JACOBI G., GNOTH M. Anreicherung und Eigenschaften einer Transaminase aus Bierhefe. Biochem Z. 1958;329(6):529–541. [PubMed] [Google Scholar]
  10. HOLZER H., GOEDDE H. W. Oxydation von alpha-Ketosäuren und einigen Aldehyden mit Pyruvat-decarboxylase aus Hefe. Biochem Z. 1957;329(3):192–208. [PubMed] [Google Scholar]
  11. HOLZER H., HIERHOLZER G., WITT I. [alpha-Ketoglutarate oxidase of yeast]. Biochem Z. 1963;337:115–119. [PubMed] [Google Scholar]
  12. HOLZER H. Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harb Symp Quant Biol. 1961;26:277–288. doi: 10.1101/sqb.1961.026.01.034. [DOI] [PubMed] [Google Scholar]
  13. HOLZER H., SCHNEIDER S. Anreicherung und Trennung einer DPN-spezifischen und einer TPN-spezifischen Glutaminsäure-dehydrogenase aus Hefe. Biochem Z. 1957;329(5):361–369. [PubMed] [Google Scholar]
  14. KERBS H. A., GURIN S., EGGLESTON L. V. The pathway of oxidation of acetate in baker's yeast. Biochem J. 1952 Aug;51(5):614–628. doi: 10.1042/bj0510614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KORNBERG H. L., ELSDEN S. R. The metabolism of 2-carbon compounds by microorganisms. Adv Enzymol Relat Subj Biochem. 1961;23:401–470. doi: 10.1002/9780470122686.ch8. [DOI] [PubMed] [Google Scholar]
  16. KORNBERG H. L. THE ROLE OF ACETATE IN ISOCITRATE LYASE INDUCTION. Biochim Biophys Acta. 1963 Jul 9;73:517–519. doi: 10.1016/0006-3002(63)90456-6. [DOI] [PubMed] [Google Scholar]
  17. Kleinzeller A. The formation of succinic acid in yeast. Biochem J. 1941 Apr;35(4):495–501. doi: 10.1042/bj0350495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LINNANE A. W. Respiring mitochondria from baker's yeast. Arch Biochem Biophys. 1955 May;56(1):264–265. doi: 10.1016/0003-9861(55)90356-8. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. MASSEY V., SINGER T. P. Studies on succinic dehydrogenase. III. The fumaric reductase activity of succinic dehydrogenase. J Biol Chem. 1957 Sep;228(1):263–274. [PubMed] [Google Scholar]
  21. Megraw R. E., Beers R. J. Glyoxylate metabolism in growth and sporulation of Bacillus cereus. J Bacteriol. 1964 May;87(5):1087–1093. doi: 10.1128/jb.87.5.1087-1093.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NOSSAL P. M. Distribution of enzymes in cell-free yeast extracts. Biochem J. 1954 May;57(1):62–69. doi: 10.1042/bj0570062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NOSSAL P. M., HANSEN I. A., LADD J. N. The mechanism of yeast respiration. I. Preparation and properties of actively respiring cell-free yeast extracts. Biochim Biophys Acta. 1957 Jan;23(1):103–115. doi: 10.1016/0006-3002(57)90291-3. [DOI] [PubMed] [Google Scholar]
  24. NOSSAL P. M. Oxidative reactions in cell-free yeast extracts. Biochim Biophys Acta. 1954 May;14(1):154–155. doi: 10.1016/0006-3002(54)90147-x. [DOI] [PubMed] [Google Scholar]
  25. Polakis E. S., Bartley W., Meek G. A. Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem J. 1965 Oct;97(1):298–302. doi: 10.1042/bj0970298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Polakis E. S., Bartley W., Meek G. A. Changes in the structure and enzyme activity of Saccharomyces cerevisiae in response to changes in the environment. Biochem J. 1964 Feb;90(2):369–374. doi: 10.1042/bj0900369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  28. SRERE P. A., KOSICKI G. W. The purification of citrate-condensing enzyme. J Biol Chem. 1961 Oct;236:2557–2559. [PubMed] [Google Scholar]
  29. STOPPANI A. O., CONCHES L., DE FAVELUKES S. L., SACERDOTE F. L. Assimilation of carbon dioxide by yeasts. Biochem J. 1958 Nov;70(3):438–455. doi: 10.1042/bj0700438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SUOMALAINEN H., OURA E. Changes in the decarboxylase activity of baker's yeast during the growth phase. Biochim Biophys Acta. 1959 Jan;31(1):115–124. doi: 10.1016/0006-3002(59)90446-9. [DOI] [PubMed] [Google Scholar]
  31. TABOR H., MEHLER A. H., STADTMAN E. R. The enzymatic acetylation of amines. J Biol Chem. 1953 Sep;204(1):127–138. [PubMed] [Google Scholar]
  32. UTTER M. F., KEECH D. B., NOSSAL P. M. Oxidative phosphorylation by subcellular particles from yeast. Biochem J. 1958 Mar;68(3):431–440. doi: 10.1042/bj0680431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. VITOLS E., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. II. Morphology and oxidative phosphorylation capacity of mitochondria and derived particles from baker's yeast. J Biophys Biochem Cytol. 1961 Mar;9:701–710. doi: 10.1083/jcb.9.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. VITOLS E., NORTH R. J., LINNANE A. W. Studies on the oxidative metabolism of Saccharomyces cerevisiae. I. Observations on the fine structure of the yeast cell. J Biophys Biochem Cytol. 1961 Mar;9:689–699. doi: 10.1083/jcb.9.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WANG C. H., CHRISTENSEN B. E., CHELDELIN V. H. Conversion of acetate and pyruvate to glutamic acid in yeast. J Biol Chem. 1953 Apr;201(2):683–688. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES