Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Nov;97(2):532–539. doi: 10.1042/bj0970532

Observations on iron uptake, iron metabolism, cytochrome c content, cytochrome a content and cytochrome c-oxidase activity in regenerating rat liver

A R L Gear 1,*
PMCID: PMC1264671  PMID: 16749160

Abstract

1. Differential and density-gradient centrifugation were used to fractionate mitochondria and fluffy layer from normal and regenerating rat liver. The iron, cytochrome a and cytochrome c contents and cytochrome c-oxidase activity were studied as well as the uptake of 59Fe into protein and cytochrome c. 2. A certain degree of heterogeneity was evident between the heavy-mitochondrial and light-mitochondrial fractions, and in their behaviour during liver regeneration. 3. The specific content of light-mitochondrial iron and cytochrome a was 1·3–1·4 times that of heavy mitochondria. Changes in cytochrome c-oxidase activity closely followed those of cytochrome a content during liver regeneration, but not for light mitochondria after 10 days. 4. Radioactive iron (59Fe) was most actively taken up by well-washed light mitochondria during early liver regeneration. After 22 days fluffy layer became preferentially labelled. This substantiates the view that fluffy layer partially represents broken-down mitochondria. 5. During early regeneration, light-mitochondrial fractions separated along a density gradient were about 3 times as radioactive, and showed distinct heterogeneity of 59Fe-labelling, in contrast with near homogeneity for heavy mitochondria. 6. Immediately after partial hepatectomy fractions corresponding to density 1·155 were 5–10 times as radioactive as particles of greater density. The radioactivity decreased sharply after 6 days. 7. These particles of low density possessed higher NADH–cytochrome c-reductase (1·5–5-fold) and succinate-dehydrogenase (1·1–2-fold) activities than typical mitochondrial fractions. Their succinate–cytochrome c-reductase and cytochrome c-oxidase activities were slightly lower. 8. The results are discussed in relation to mitochondrial morphogenesis, and a possible route from submitochondrial particles is suggested.

Full text

PDF
532

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLARD C., MATHIEU R., DE LAMIRANDE G., CANTERO A. Mitochondrial population in mammalian cells. I. Description of a counting technic and preliminary results on rat liver in different physiological and pathological conditions. Cancer Res. 1952 Jun;12(6):407–412. [PubMed] [Google Scholar]
  2. BAHR G. F., ZEITLER E. Study of mitochondria in rat liver. Quantitative electron microscopy. J Cell Biol. 1962 Dec;15:489–501. doi: 10.1083/jcb.15.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BEAUFAY H., BENDALL D. S., BAUDHUIN P., DE DUVE C. Tissue fractionation studies. 12. Intracellular distribution of some dehydrogenases, alkaline deoxyribonuclease and iron in rat-liver tissue. Biochem J. 1959 Dec;73:623–628. doi: 10.1042/bj0730623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BEINERT H., HEINEN W., PALMER G. Applications of combined low temperature optical and electron paramagnetic resonance spectroscopy to the study of oxidative enzymes. Brookhaven Symp Biol. 1962 Dec;15:229–265. [PubMed] [Google Scholar]
  5. BERNHARD W., ROUILLER C. Microbodies and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):355–360. doi: 10.1083/jcb.2.4.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BROSEMER R. W., VOGELL W., BUECHER T. MORPHOLOGISCHE UND ENZYMATISCHE MUSTER BEI DER ENTWICKLUNG INDIREKTER FLUGMUSKELN VON LOCUSTA MIGRATORIA. Biochem Z. 1963;338:854–910. [PubMed] [Google Scholar]
  7. ESTABROOK R. W., HOLOWINSKY A. Studies on the content and organization of the respiratory enzymes of mitochondria. J Biophys Biochem Cytol. 1961 Jan;9:19–28. doi: 10.1083/jcb.9.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FLETCHER M. J., SANADI D. R. Turnover of rat-liver mitochondria. Biochim Biophys Acta. 1961 Aug 5;51:356–360. doi: 10.1016/0006-3002(61)90177-9. [DOI] [PubMed] [Google Scholar]
  9. GEAR A. R. SOME FEATURES OF MITOCHONDRIA AND FLUFFY LAYER IN REGENERATING RAT LIVER. Biochem J. 1965 Apr;95:118–137. doi: 10.1042/bj0950118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GRIFFITHS D. E., WHARTON D. C. Studies of the electron transport system. XXXV. Purification and properties of cytochrome oxidase. J Biol Chem. 1961 Jun;236:1850–1856. [PubMed] [Google Scholar]
  11. KALF G. F. DEOXYRIBONUCLEIC ACID IN MITOCHONDRIA AND ITS ROLE IN PROTEIN SYNTHESIS. Biochemistry. 1964 Nov;3:1702–1706. doi: 10.1021/bi00899a018. [DOI] [PubMed] [Google Scholar]
  12. KLINGENBERG M., PETTE D. Proportions of mitochondrial enzymes and pyridine nucleotides. Biochem Biophys Res Commun. 1962 Jun 4;7:430–432. doi: 10.1016/0006-291x(62)90329-7. [DOI] [PubMed] [Google Scholar]
  13. KUFF E. L., SCHNEIDER W. C. Intracellular distribution of enzymes. XII. Biochemical heterogeneity of mitochondria. J Biol Chem. 1954 Feb;206(2):677–685. [PubMed] [Google Scholar]
  14. LAIRD A. K., NYGAARD O., RIS H., BARTON A. D. Separation of mitochondria into two morphologically and biochemically distinct types. Exp Cell Res. 1953 Sep;5(1):147–160. doi: 10.1016/0014-4827(53)90100-1. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. LUCK D. J. Formation of mitochondria in Neurospora crassa. A quantitative radioautographic study. J Cell Biol. 1963 Mar;16:483–499. doi: 10.1083/jcb.16.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LUCK D. J., REICH E. DNA IN MITOCHONDRIA OF NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1964 Oct;52:931–938. doi: 10.1073/pnas.52.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LUND H. A., VATTER A. E., HANSON J. B. Biochemical and cytological changes accompanying growth and differentiation in the roots of Zea mays. J Biophys Biochem Cytol. 1958 Jan 25;4(1):87–98. doi: 10.1083/jcb.4.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MASSEY V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta. 1959 Jul;34:255–256. doi: 10.1016/0006-3002(59)90259-8. [DOI] [PubMed] [Google Scholar]
  20. NASS M. M., NASS S. INTRAMITOCHONDRIAL FIBERS WITH DNA CHARACTERISTICS. I. FIXATION AND ELECTRON STAINING REACTIONS. J Cell Biol. 1963 Dec;19:593–611. doi: 10.1083/jcb.19.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. NEILANDS J. B. The isolation and properties of cytochrome c from different sources. J Biol Chem. 1952 May;197(2):701–708. [PubMed] [Google Scholar]
  22. SCHATZ G. THE ISOLATION OF POSSIBLE MITOCHONDRIAL PRECURSOR STRUCTURES FROM AEROBICALLY GROWN BAKER'S YEAST. Biochem Biophys Res Commun. 1963 Aug 20;12:448–451. doi: 10.1016/0006-291x(63)90313-9. [DOI] [PubMed] [Google Scholar]
  23. SCHJEIDE O. A., MCCANDLESS R. G., MUNN R. J. MITOCHONDRIAL MORPHOGENESIS. Nature. 1964 Jul 11;203:158–160. doi: 10.1038/203158a0. [DOI] [PubMed] [Google Scholar]
  24. SCHOLLMEYER P., KLINGENBERG M. [On the cytochrome content of animal tissue]. Biochem Z. 1962;335:426–439. [PubMed] [Google Scholar]
  25. THIERS R. E., VALLEE B. L. Distribution of metals in subcellular fractions of rat liver. J Biol Chem. 1957 Jun;226(2):911–920. [PubMed] [Google Scholar]
  26. TOLANI A. J., TALWAR G. P. DIFFERENTIAL METABOLISM OF VARIOUS BRAIN REGIONS. BIOCHEMICAL HETEROGENEITY OF MITOCHONDRIA. Biochem J. 1963 Aug;88:357–362. doi: 10.1042/bj0880357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES