Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1965 Nov;97(2):587–594. doi: 10.1042/bj0970587

Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate

P B Garland 1, D Shepherd 1, D W Yates 1
PMCID: PMC1264680  PMID: 16749169

Abstract

1. Fluorimetric assays are described for CoASH, acetyl-CoA and long-chain fatty acyl-CoA, and are sensitive to at least 50μμmoles of each. 2. Application of these assays to rat-liver mitochondria oxidizing palmitate in the absence and presence of carnitine indicated two pools of intramitochondrial CoA. One pool could be acylated by palmitate and ATP, and the other pool acylated by palmitate with ATP and carnitine, or by palmitoylcarnitine alone. 3. The intramitochondrial content of acetyl-CoA is increased by the oxidation of palmitate both in the absence and presence of l-malate. 4. The conversion of palmitoyl-CoA into acetyl-CoA by β-oxidation takes place without detectable accumulation of acyl-CoA intermediates.

Full text

PDF
587

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTS A. W., GOLDMAN P., VAGELOS P. R. The condensation reaction of fatty acid synthesis. I. Separation and properties of the enzymes. J Biol Chem. 1963 Feb;238:557–565. [PubMed] [Google Scholar]
  2. BREMER J. Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J Biol Chem. 1962 Dec;237:3628–3632. [PubMed] [Google Scholar]
  3. BRESSLER R., WAKIL S. J. Studies on the mechanism of fatty acid synthesis. XI. The product of the reaction and the role of sulfhydryl groups in the synthesis of fatty acids. J Biol Chem. 1962 May;237:1441–1448. [PubMed] [Google Scholar]
  4. BRODIE J. D., WASSON G. W., PORTER J. W. The formation of malonyl-enzyme and its conversion to fatty acids and beta-hydroxy, beta-methyl glutaryl coenzyme A. Biochem Biophys Res Commun. 1963 Jul 10;12:27–33. doi: 10.1016/0006-291x(63)90408-x. [DOI] [PubMed] [Google Scholar]
  5. CHAPPELL J. B., CROFTS A. R. THE EFFECT OF ATRACTYLATE AND OLIGOMYCIN ON THE BEHAVIOUR OF MITOCHONDRIA TOWARDS ADENINE NUCLEOTIDES. Biochem J. 1965 Jun;95:707–716. doi: 10.1042/bj0950707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DRYSDALE G. R., LARDY H. A. Fatty acid oxidation by a soluble enzyme system from mitochondria. J Biol Chem. 1953 May;202(1):119–136. [PubMed] [Google Scholar]
  8. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  9. ESTABROOK R. W., MAITRA P. K. A fluorimetric method for the quantitative microanalysis of adenine and pyridine nucleotides. Anal Biochem. 1962 May;3:369–382. doi: 10.1016/0003-2697(62)90065-9. [DOI] [PubMed] [Google Scholar]
  10. FRITZ I. B., KAPLAN E., YUE K. T. Specificity of carnitine action on fatty acid oxidation by heart muscle. Am J Physiol. 1962 Jan;202:117–121. doi: 10.1152/ajplegacy.1962.202.1.117. [DOI] [PubMed] [Google Scholar]
  11. FRITZ I. B., YUE K. T. LONG-CHAIN CARNITINE ACYLTRANSFERASE AND THE ROLE OF ACYLCARNITINE DERIVATIVES IN THE CATALYTIC INCREASE OF FATTY ACID OXIDATION INDUCED BY CARNITINE. J Lipid Res. 1963 Jul;4:279–288. [PubMed] [Google Scholar]
  12. GOLDMAN D. S. Studies on the fatty acid oxidizing system of animal tissues. VII. The beta-ketoacyl coenzyme A cleavage enzyme. J Biol Chem. 1954 May;208(1):345–357. [PubMed] [Google Scholar]
  13. HUELSMANN W. C., SILIPRANDI D., CIMAN M., SILIPRANDI N. EFFECT OF CARNITINE ON THE OXIDATION OF ALPHA-OXOGLUTARATE TO SUCCINATE IN THE PRESENCE OF ACETOACETATE OR PYRUVATE. Biochim Biophys Acta. 1964 Oct 9;93:166–168. doi: 10.1016/0304-4165(64)90271-5. [DOI] [PubMed] [Google Scholar]
  14. LYNEN F. Biosynthesis of saturated fatty acids. Fed Proc. 1961 Dec;20:941–951. [PubMed] [Google Scholar]
  15. LYNEN F. Functional group of coenzyme A and its metabolic relations, especially in the fatty acid cycle. Fed Proc. 1953 Sep;12(3):683–691. [PubMed] [Google Scholar]
  16. MARTIN D. B., VAGELOS P. R. Evidence against free butyryl-CoA as an intermediate in long chain fatty acid biosynthesis. Biochem Biophys Res Commun. 1961 May 15;5:16–21. doi: 10.1016/0006-291x(61)90072-9. [DOI] [PubMed] [Google Scholar]
  17. MASSEY V. The composition of the ketoglutarate dehydrogenase complex. Biochim Biophys Acta. 1960 Mar 11;38:447–460. doi: 10.1016/0006-3002(60)91280-4. [DOI] [PubMed] [Google Scholar]
  18. SANADI D. R., LITTLEFIELD J. W., BOCK R. M. Studies on alpha-ketoglutaric oxidase. II. Purification and properties. J Biol Chem. 1952 May;197(2):851–862. [PubMed] [Google Scholar]
  19. TUBBS P. K. INHIBITION OF CITRATE FORMATION BY LONG-CHAIN ACYL THIOESTERS OF COENZYME A AS A POSSIBLE CONTROL MECHANISM IN FATTY ACID BIOSYNTHESIS. Biochim Biophys Acta. 1963 Oct 22;70:608–609. doi: 10.1016/0006-3002(63)90804-7. [DOI] [PubMed] [Google Scholar]
  20. Tubbs P. K., Garland P. B. Variations in tissue contents of coenzyme A thio esters and possible metabolic implications. Biochem J. 1964 Dec;93(3):550–557. doi: 10.1042/bj0930550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WIELAND O., WEISS L. INHIBITION OF CITRATE-SYNTHASE BY PALMITYL-COENZYME A. Biochem Biophys Res Commun. 1963 Sep 10;13:26–31. doi: 10.1016/0006-291x(63)90156-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES