Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Jan;98(1):105–111. doi: 10.1042/bj0980105

Conformational changes and the regulation of glutamate-dehydrogenase activity

P M Bayley 1, G K Radda 1
PMCID: PMC1264801  PMID: 4287181

Abstract

1. The effect of NADH and the non-competitive inhibitor GTP on the optical-rotatory-dispersion properties of glutamate dehydrogenase has been studied. 2. Analysis of the data in terms of the a0 and b0 parameters of the Moffitt–Yang equation indicates that a conformational change is induced either by NADH or by GTP in the presence of small amounts of NADH. 3. Sedimentation measurements under comparable conditions showed that the enzyme reversibly dissociates into sub-units but that this dissociation is only secondary to the conformational changes. 4. Fluorescence measurements showed that the binding constant of NADH and the number of binding sites on the enzyme increased in the presence of GTP. 5. This is confirmed by studies of fluorescence polarization, which in addition showed that the movement of NADH on the enzyme surface is more restricted in the presence of GTP. 6. The relation of these results to possible regulatory mechanisms is discussed.

Full text

PDF
105

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEYCHOK S., BLOUT E. R. Optical rotatory dispersion of sperm whale ferrimyoglobin and horse ferrihemoglobin. J Mol Biol. 1961 Dec;3:769–777. doi: 10.1016/s0022-2836(61)80082-x. [DOI] [PubMed] [Google Scholar]
  2. BITENSKY M. W., YIELDING K. L., TOMKINS G. M. RECIPROCAL CHANGES IN ALANINE AND GLUTAMATE DEHYDROGENASE ACTIVITIES AFTER EXPOSURE OF CRYSTALLINE BOVINE L-GLUTAMATE DEHYDROGENASE TO ORGANIC MERCURY. J Biol Chem. 1965 Feb;240:663–667. [PubMed] [Google Scholar]
  3. BITENSKY M. W., YIELDING K. L., TOMKINS G. M. THE REVERSAL BY ORGANIC MERCURIALS OF "ALLOSTERIC" CHANGES IN GLUTAMATE DEHYDROGENASE. J Biol Chem. 1965 Feb;240:668–673. [PubMed] [Google Scholar]
  4. FRIEDEN C. GLUTAMATE DEHYDROGENASE. V. THE RELATION OF ENZYME STRUCTURE TO THE CATALYTIC FUNCTION. J Biol Chem. 1963 Oct;238:3286–3299. [PubMed] [Google Scholar]
  5. HELLERMAN L., SCHELLENBERG K. A., REISS O. K. L-glutamic acid dehydrogenase. II. Role of enzyme sulfhydryl groups. J Biol Chem. 1958 Dec;233(6):1468–1478. [PubMed] [Google Scholar]
  6. MAGAR M. E. CONFORMATIONAL CHANGES IN GLUTAMATE DEHYDROGENASE. Biochim Biophys Acta. 1965 Feb 22;96:345–348. [PubMed] [Google Scholar]
  7. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  8. Moffitt W., Yang J. T. THE OPTICAL ROTATORY DISPERSION OF SIMPLE POLYPEPTIDES. I. Proc Natl Acad Sci U S A. 1956 Sep;42(9):596–603. doi: 10.1073/pnas.42.9.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. OLSON J. A., ANFINSEN C. B. The crystallization and characterization of L-glutamic acid dehydrogenase. J Biol Chem. 1952 May;197(1):67–79. [PubMed] [Google Scholar]
  10. ROSENBERG A., THEORELL H., YONETANI T. OPTICAL ROTATORY DISPERSION OF LIVER ALCOHOL DEHYDROGENASE AND ITS COMPLEXES. Nature. 1964 Aug 15;203:755–756. doi: 10.1038/203755a0. [DOI] [PubMed] [Google Scholar]
  11. TOMKINS G. M., YIELDING K. L., CURRAN J. F. The influence of diethylstilbestrol and adenosine diphosphate on pyridine nucleotide coenzyme binding by glutamic dehydrogenase. J Biol Chem. 1962 May;237:1704–1708. [PubMed] [Google Scholar]
  12. ULMER D. D., VALLEE B. L. Anomalous rotatory dispersion of enzyme-chelate complexes. I. Alcohol dehydrogenase. J Biol Chem. 1961 Mar;236:730–734. [PubMed] [Google Scholar]
  13. URNES P., DOTY P. Optical rotation and the conformation of polypeptides and proteins. Adv Protein Chem. 1961;16:401–544. doi: 10.1016/s0065-3233(08)60033-9. [DOI] [PubMed] [Google Scholar]
  14. WINER A. D., SCHWERT G. W. Fluorescence spectra of ternary complexes of dehydrogenases with reduced diphosphopyridine nucleotide and reduced substrates. Biochim Biophys Acta. 1958 Aug;29(2):424–425. doi: 10.1016/0006-3002(58)90203-8. [DOI] [PubMed] [Google Scholar]
  15. YIELDING K. L., TOMKINS G. M., BITENSKY M. W., TALAL N. REAGENT-INDUCED CHANGES IN THE STRUCTURE AND CATALYTIC ACTIVITY OF GLUTAMIC DEHYDROGENASE. Can J Biochem. 1964 May;42:727–743. doi: 10.1139/o64-085. [DOI] [PubMed] [Google Scholar]
  16. YIELDING K. L., TOMKINS G. M. Inhibition of glutamic dehydrogenase by o-phenanthroline and its analogs. Biochim Biophys Acta. 1962 Aug 13;62:327–331. doi: 10.1016/0006-3002(62)90046-x. [DOI] [PubMed] [Google Scholar]
  17. Yielding K. L., Tomkins G. M. STRUCTURAL ALTERATIONS IN CRYSTALLINE GLUTAMIC DEHYDROGENASE INDUCED BY STEROID HORMONES. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1483–1488. doi: 10.1073/pnas.46.11.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES