Abstract
1. The factors concerned in the estimation of P/O ratios when fatty acids are oxidized by rat-liver mitochondria have been assessed. 2. The oxidation of butyrate, hexanoate and octanoate is accompanied by ATP synthesis. At low concentrations of the fatty acids, P/O ratios approximately 2·5 are obtained. 3. Oxidative phosphorylation is uncoupled, respiratory control ratios are lowered and respiration is inhibited when the concentration of the fatty acid in the incubating medium is raised (to 5–10mm); octanoate is a more potent uncoupler than either hexanoate or butyrate. 4. Serum albumin and carnitine, either singly or in combination, protect the mitochondria from the effect exerted by the fatty acids. 5. The rate of oxidation of short-chain fatty acids in the presence of ADP is increased in the presence of carnitine.
Full text
PDF![378](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/b02731ec9420/biochemj00758-0031.png)
![379](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/450356578a18/biochemj00758-0032.png)
![380](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/c2fcd889794e/biochemj00758-0033.png)
![381](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/250f6ab5dc45/biochemj00758-0034.png)
![382](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/902ced8e724a/biochemj00758-0035.png)
![383](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/056be3afd13c/biochemj00758-0036.png)
![384](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/54f7ba6d1993/biochemj00758-0037.png)
![385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/faa88f13e7d8/biochemj00758-0038.png)
![386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/95b5f48c3ef8/biochemj00758-0039.png)
![387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/e5c61c4933c7/biochemj00758-0040.png)
![388](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2390/1264855/5a7b4b44614d/biochemj00758-0041.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BJOERNTORP P., ELLS H. A., BRADFORD R. H. ALBUMIN ANTAGONISM OF FATTY ACID EFFECTS ON OXIDATION AND PHOSPHORYLATION REACTIONS IN RAT LIVER MITOCHONDRIA. J Biol Chem. 1964 Jan;239:339–344. [PubMed] [Google Scholar]
- CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
- CHAPPELL J. B., PERRY S. V. Biochemical and osmotic properties of skeletal muscle mitochondria. Nature. 1954 Jun 5;173(4414):1094–1095. doi: 10.1038/1731094a0. [DOI] [PubMed] [Google Scholar]
- Chappell J. B. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Biochem J. 1964 Feb;90(2):225–237. doi: 10.1042/bj0900225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIXON M., KLEPPE K. D-AMINO ACID OXIDASE. I. DISSOCIATION AND RECOMBINATION OF THE HOLOENZYME. Biochim Biophys Acta. 1965 Mar 22;96:357–367. doi: 10.1016/0005-2787(65)90556-3. [DOI] [PubMed] [Google Scholar]
- EDWARDS S. W., BALL E. G. The action of phospholipases on succinate oxidase and cytochrome oxidase. J Biol Chem. 1954 Aug;209(2):619–633. [PubMed] [Google Scholar]
- Enser M. Fatty acids and intestinal metabolism. Biochem J. 1964 Nov;93(2):290–297. doi: 10.1042/bj0930290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRITZ I. B. CARNITINE AND ITS ROLE IN FATTY ACID METABOLISM. Adv Lipid Res. 1963;1:285–334. [PubMed] [Google Scholar]
- FRITZ I. B., KAPLAN E., YUE K. T. Specificity of carnitine action on fatty acid oxidation by heart muscle. Am J Physiol. 1962 Jan;202:117–121. doi: 10.1152/ajplegacy.1962.202.1.117. [DOI] [PubMed] [Google Scholar]
- HEPPEL L. A., HILMOE R. J. Purification of yeast inorganic pyrophosphatase. J Biol Chem. 1951 Sep;192(1):87–94. [PubMed] [Google Scholar]
- HIRD F. J., SYMONS R. H. The mechanism of ketone-body formation from butyrate in rat liver. Biochem J. 1962 Jul;84:212–216. doi: 10.1042/bj0840212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIRD F. J., SYMONS R. H. The metabolism of glucose and butyrate by the omasum of the sheep. Biochim Biophys Acta. 1959 Oct;35:422–434. doi: 10.1016/0006-3002(59)90392-0. [DOI] [PubMed] [Google Scholar]
- HULSMANN W. C., ELLIOTT W. B., SLATER E. C. The nature and mechanism of action of uncoupling agents present in mitochrome preparations. Biochim Biophys Acta. 1960 Apr 8;39:267–276. doi: 10.1016/0006-3002(60)90163-3. [DOI] [PubMed] [Google Scholar]
- Hird F. J., Symons R. H., Weidemann M. J. The effect of hexokinase and tricarboxylic acid-cycle intermediates on fatty acid oxidation and formation of ketone bodies by rat-liver mitochondria. Biochem J. 1966 Feb;98(2):389–393. doi: 10.1042/bj0980389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hird F. J., Weidemann M. J. Ketone-body synthesis in relation to age of lambs. Biochem J. 1964 Nov;93(2):423–430. doi: 10.1042/bj0930423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JUDAH J. D., WILLIAMS-ASHMAN H. G. The inhibition of oxidative phosphorylation. Biochem J. 1951 Jan;48(1):33–42. doi: 10.1042/bj0480033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARDY H. A., PRESSMAN B. C. Effect of surface active agents on the latent ATPase of mitochondria. Biochim Biophys Acta. 1956 Sep;21(3):458–466. doi: 10.1016/0006-3002(56)90182-2. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
- LEHNINGER A. L., REMMERT L. F. An endogenous uncoupling and swelling agent in liver mitochondria and its enzymic formation. J Biol Chem. 1959 Sep;234:2459–2464. [PubMed] [Google Scholar]
- MALEY G. F., LARDY H. A. Metabolic effects of thyroid hormones in vitro. II. Influence of thyroxine and triiodothyronine on oxidative phosphorylation. J Biol Chem. 1953 Sep;204(1):435–444. [PubMed] [Google Scholar]
- MILLER W. L., KRAKE J. J. Studies on lipid metabolism in mice treated with beta-hydroxy, gamma-betaine-butyric acid. Proc Soc Exp Biol Med. 1962 Jan;109:215–218. doi: 10.3181/00379727-109-27157. [DOI] [PubMed] [Google Scholar]
- McMURRAY W. C., LARDY H. A. A requirement for coenzyme A in oxidative phosphorylation. J Biol Chem. 1958 Sep;233(3):754–759. [PubMed] [Google Scholar]
- NAKAMURA M., PICHETTE P., BROITMAN S., BEZMAN A. L., ZAMCHECK N., VITALE J. J. Studies on the inhibitory effect of intestinal mucosa of succinoxidase activity. J Biol Chem. 1959 Jan;234(1):206–210. [PubMed] [Google Scholar]
- PENNINGTON R. J. The metabolism of short-chain fatty acids in the sheep. I. Fatty acid utilization and ketone body production by rumen epithelium and other tissues. Biochem J. 1952 May;51(2):251–258. doi: 10.1042/bj0510251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PENN N. W. The requirements for serum albumin metabolism in subcellular fractions of liver and brain. Biochim Biophys Acta. 1960 Jan 1;37:55–63. doi: 10.1016/0006-3002(60)90078-0. [DOI] [PubMed] [Google Scholar]
- TERESI J. D., LUCK J. M. The combination of organic anions with serum albumin. VIII. Fatty acid salts. J Biol Chem. 1952 Feb;194(2):823–834. [PubMed] [Google Scholar]
- WOJTCZAK L., WOJTCZAK A. B. Uncoupling of oxidative phosphorylation and inhibition of ATP-Pi exchange by a substance from insect mitochondria. Biochim Biophys Acta. 1960 Apr 8;39:277–286. doi: 10.1016/0006-3002(60)90164-5. [DOI] [PubMed] [Google Scholar]