Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Mar;98(3):795–803. doi: 10.1042/bj0980795

The route of ethanol formation in Zymomonas mobilis

E A Dawes 1,*, D W Ribbons 1,, P J Large 1,*
PMCID: PMC1264921  PMID: 4287842

Abstract

1. Enzymic evidence supporting the operation of the Entner–Doudoroff pathway in the anaerobic conversion of glucose into ethanol and carbon dioxide by Zymomonas mobilis is presented. 2. Cell extracts catalysed the formation of equimolar amounts of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate. Evidence that 3-deoxy-2-oxo-6-phosphogluconate is an intermediate in this conversion was obtained. 3. Cell extracts of the organism contained the following enzymes: glucose 6-phosphate dehydrogenase (active with NAD and NADP), ethanol dehydrogenase (active with NAD), glyceraldehyde 3-phosphate dehydrogenase (active with NAD), hexokinase, gluconokinase, glucose dehydrogenase and pyruvate decarboxylase. Extracts also catalysed the overall conversion of glycerate 3-phosphate into pyruvate in the presence of ADP. 4. Gluconate dehydrogenase, fructose 1,6-diphosphate aldolase and NAD–NADP transhydrogenase were not detected. 5. It is suggested that NAD is the physiological electron carrier in the balanced oxidation–reduction involved in ethanol formation.

Full text

PDF
795

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  2. BELAUICH J. P., SENEZ J. C. INFLUENCE OF AERATION AND OF PANTOTHENATE ON GROWTH YIELDS OF ZYMOMONAS MOBILIS. J Bacteriol. 1965 May;89:1195–1200. doi: 10.1128/jb.89.5.1195-1200.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAWES E. A. COMPARATIVE ASPECTS OF ALCOHOL FORMATION. J Gen Microbiol. 1963 Aug;32:151–155. doi: 10.1099/00221287-32-2-151. [DOI] [PubMed] [Google Scholar]
  4. DEMOSS R. D., GUNSALUS I. C., BARD R. C. A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides. J Bacteriol. 1953 Jul;66(1):10–16. doi: 10.1128/jb.66.1.10-16.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dawes E. A., Ribbons D. W., Rees D. A. Sucrose utilization by Zymomonas mobilis: formation of a levan. Biochem J. 1966 Mar;98(3):804–812. doi: 10.1042/bj0980804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeMOSS R. D., GIBBS M. Ethanol formation in Pseudomonas lindneri. Arch Biochem Biophys. 1951 Dec;34(2):478–479. doi: 10.1016/0003-9861(51)90028-8. [DOI] [PubMed] [Google Scholar]
  7. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  8. FRAMPTON E. W., WOOD W. A. Carbohydrate oxidation by Pseudomonas fluorescens VI. Conversion of 2-keto-6-phosphogluconate to pyruvate. J Biol Chem. 1961 Oct;236:2571–2577. [PubMed] [Google Scholar]
  9. GIBBS M., DEMOSS R. D. Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas lindneri. J Biol Chem. 1954 Apr;207(2):689–694. [PubMed] [Google Scholar]
  10. HOCHSTER R. M., KATZNELSON H. On the mechanism of glucose-beta-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli (XP8). Can J Biochem Physiol. 1958 Jul;36(7):669–689. [PubMed] [Google Scholar]
  11. HULLIN R. P., NOBLE R. L. The determination of lacic acid in microgram quantities. Biochem J. 1953 Sep;55(2):289–291. doi: 10.1042/bj0550289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KOVACHEVICH R., WOOD W. A. Carbohydrate metabolism by Pseudomonas fluorescens. IV. Purification and properties of 2-keto-3-deoxy-6-phosphogluconate aldolase. J Biol Chem. 1955 Apr;213(2):757–767. [PubMed] [Google Scholar]
  13. MACGEE J., DOUDOROFF M. A new phosphorylated intermediate in glucose oxidation. J Biol Chem. 1954 Oct;210(2):617–626. [PubMed] [Google Scholar]
  14. MELOCHE H. P., WOOD W. A. THE MECHANISM OF 2-KETO-3-DEOXY-6-PHOSPHOGLUCONIC ALDOLASE. J Biol Chem. 1964 Oct;239:3511–3514. [PubMed] [Google Scholar]
  15. PEEL J. L. The breakdown of pyruvate by cell-free extracts of the rumen micro-organism LC. Biochem J. 1960 Mar;74:525–541. doi: 10.1042/bj0740525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RAPS S., DEMOSS R. D. Glycolytic enzymes in Zymomonas mobilis. J Bacteriol. 1962 Jul;84:115–118. doi: 10.1128/jb.84.1.115-118.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SRINIVASAN P. R., SPRINSON D. B. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem. 1959 Apr;234(4):716–722. [PubMed] [Google Scholar]
  18. STERN I. J., WANG C. H., GILMOUR C. M. Comparative catabolism of carbohydrates in Pseudomonas species. J Bacteriol. 1960 Apr;79:601–611. doi: 10.1128/jb.79.4.601-611.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. STICKLAND L. H. The determination of small quantities of bacteria by means of the biuret reaction. J Gen Microbiol. 1951 Oct;5(4):698–703. doi: 10.1099/00221287-5-4-698. [DOI] [PubMed] [Google Scholar]
  20. WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
  21. WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. II. Mechanism of hexose phosphate oxidation. J Biol Chem. 1954 Feb;206(2):625–635. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES