Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 May;99(2):367–380. doi: 10.1042/bj0990367

Effects of insulin-induced hypoglycaemia on the fate of glucose carbon atoms in the mouse

R Vrba 1
PMCID: PMC1265005  PMID: 5944244

Abstract

1. [U-14C]Glucose was injected into mice and the distribution of 14C in various chemical fractions of the whole body was determined at times from 15min. to 8hr. after injection. 2. At 1hr. after injection 31·8% of the recovered 14C was found in the expired air and 26·7% was found in the isolated glycogen, lipids, proteins, nucleic acids and in other acid-insoluble carbon compounds (`residual 14C'). The rest (41·5%) was combined in acid-soluble substances. 3. When insulin was injected 5min. or 1hr. before injection of [U-14C]glucose, and the mouse was killed 1hr. later, the 14C content of expired air, glycogen, protein and `residual 14C' was not significantly affected; but the incorporation of 14C into lipids was increased two- to three-fold. 4. Chromatography of the lipids on silicic acid columns and by thin-layer chromatography showed that the main effect of insulin injection was to increase the incorporation of 14C into fatty acids. 5. A significant increase of 14C after insulin injection was also found in a glyceride in which the 14C was combined in glycerol.

Full text

PDF
367

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLWEIS C., MAGNES J. Metabolism of the perfused cat brain during metrazol convulsions and electroshock. Nature. 1958 Mar 1;181(4609):626–627. doi: 10.1038/181626b0. [DOI] [PubMed] [Google Scholar]
  2. ALLWEIS C., MAGNES J. The uptake and oxidation of glucose by the perfused cat brain. J Neurochem. 1958;2(4):326–336. doi: 10.1111/j.1471-4159.1958.tb12382.x. [DOI] [PubMed] [Google Scholar]
  3. BACHELARD H. S., GAITONDE M. K., RICHTER D., VRBA R. Effect of reserpine on the heart. Lancet. 1962 Dec 22;2(7269):1330–1331. doi: 10.1016/s0140-6736(62)90884-x. [DOI] [PubMed] [Google Scholar]
  4. CARROLL N. V., LONGLEY R. W., ROE J. H. The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem. 1956 Jun;220(2):583–593. [PubMed] [Google Scholar]
  5. DAVISON A. N., GRAHAM-WOLFAARD E. QUANTITATIVE ANALYSIS AND RECOVERY OF CEREBRAL LIPIDS BY MODIFIED THIN LAYER CHROMATOGRAPHY. J Neurochem. 1964 Mar;11:147–154. doi: 10.1111/j.1471-4159.1964.tb06125.x. [DOI] [PubMed] [Google Scholar]
  6. FELLER D. D., CHAIKOFF I. L., STRISOWER E. H., SEARLE G. L. Glucose utilization in the diabetic dog, studied with C14-glucose. J Biol Chem. 1951 Feb;188(2):865–880. [PubMed] [Google Scholar]
  7. FELLER D. D., STRISOWER E. H., CHAIKOFF I. L. Turnover and oxidation of body glucose in normal and alloxan-diabetic rats. J Biol Chem. 1950 Dec;187(2):571–588. [PubMed] [Google Scholar]
  8. FILLERUP D. L., MEAD J. F. Chromatographic separation of the plasma lipids. Proc Soc Exp Biol Med. 1953 Jul;83(3):574–577. doi: 10.3181/00379727-83-20422. [DOI] [PubMed] [Google Scholar]
  9. FISHER R. B. The action of insulin on carbohydrate metabolism. Br Med Bull. 1960 Sep;16:224–227. doi: 10.1093/oxfordjournals.bmb.a069839. [DOI] [PubMed] [Google Scholar]
  10. GAITONDE M. K., MARCHI S. A., RICHTER D. THE UTILIZATION OF GLUCOSE IN THE BRAIN AND OTHER ORGANS OF THE CAT. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:124–136. doi: 10.1098/rspb.1964.0031. [DOI] [PubMed] [Google Scholar]
  11. GEIGER A., HORVATH N., KAWAKITA Y. The incorporation of 14C derived from glucose into the proteins of the brain cortex, at rest and during activity. J Neurochem. 1960 Jun;5:311–322. doi: 10.1111/j.1471-4159.1960.tb13370.x. [DOI] [PubMed] [Google Scholar]
  12. GEIGER A., KAWAKITA Y., BARKULIS S. S. Major pathways of glucose utilization in the brain in brain perfusion experiments in vivo and in situ. J Neurochem. 1960 Jun;5:323–338. doi: 10.1111/j.1471-4159.1960.tb13371.x. [DOI] [PubMed] [Google Scholar]
  13. HIRSCH J., AHRENS E. H., Jr The separation of complex lipide mixtures by the use of silicic acid chromatography. J Biol Chem. 1958 Aug;233(2):311–20. [PubMed] [Google Scholar]
  14. KITS VAN HEIJNINGEN A. J., KEMP A. Free and fixed glycogen in rat muscle. Biochem J. 1955 Mar;59(3):487–491. doi: 10.1042/bj0590487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LIS E. W., TINOCO J., OKEY R. A micromethod for fractionation of lipids by silicic acid chromatography. Anal Biochem. 1961 Apr;2:100–106. doi: 10.1016/0003-2697(61)90058-6. [DOI] [PubMed] [Google Scholar]
  16. MANCHESTER K. L., KRAHL M. E. Effect of insulin on the incorporation of C14 from C14-labeled carboxylic acids and bicarbonate into the protein of isolated rat diaphragm. J Biol Chem. 1959 Nov;234:2938–2942. [PubMed] [Google Scholar]
  17. MANCHESTER K. L., YOUNG F. G. The effect of insulin in vitro on the accumulation of amino acids by isolated rat diaphragm. Biochem J. 1960 Jun;75:487–495. doi: 10.1042/bj0750487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MANCHESTER K. L., YOUNG F. G. The effect of insulin on incorporation of amino acids into protein of normal rat diaphragm in vitro. Biochem J. 1958 Nov;70(3):353–358. doi: 10.1042/bj0700353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. ROBERTS R. B., FLEXNER J. B., FLEXNER L. B. Biochemical and physiological differentiation during morphogenesis. XXIII. Further observations relating to the synthesis of amino acids and proteins by the cerebral cortex and liver of the mouse. J Neurochem. 1959 Apr;4(1):78–90. doi: 10.1111/j.1471-4159.1959.tb13176.x. [DOI] [PubMed] [Google Scholar]
  20. ROE J. H., BAILEY J. M., GRAY R. R., ROBINSON J. N. Complete removal of glycogen from tissues by extraction with cold trichloroacetic acid solution. J Biol Chem. 1961 May;236:1244–1246. [PubMed] [Google Scholar]
  21. ROWE C. E. THE OCCURRENCE AND METABOLISM IN VITRO OF UNESTERIFIED FATTY ACID IN MOUSE BRAIN. Biochim Biophys Acta. 1964 Aug 5;84:424–434. doi: 10.1016/0926-6542(64)90006-x. [DOI] [PubMed] [Google Scholar]
  22. SEIFTER S., DAYTON S. The estimation of glycogen with the anthrone reagent. Arch Biochem. 1950 Jan;25(1):191–200. [PubMed] [Google Scholar]
  23. SINGH V. N., VENKITASUBRAMANIAN T. A. STUDY OF (1-14C)GLYCINE INCORPORATION INTO EXTRACTABLE AND RESIDUAL GLYCOGEN OF GUINEA-PIG LIVER IN VIVO. Biochim Biophys Acta. 1963 Dec 13;78:744–746. doi: 10.1016/0006-3002(63)91045-x. [DOI] [PubMed] [Google Scholar]
  24. STETTEN D., Jr, WELT I. D., INGLE D. J., MORLEY E. H. Rates of glucose production and oxidation in normal and diabetic rats. J Biol Chem. 1951 Oct;192(2):817–830. [PubMed] [Google Scholar]
  25. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  26. VRBA R., BACHELARD H. S., KRAWCZYNSKI J. Interrelationship between glucose utilization of brain and heart. Nature. 1963 Mar 2;197:869–870. doi: 10.1038/197869a0. [DOI] [PubMed] [Google Scholar]
  27. VRBA R., GAITONDE M. K., RICHTER D. The conversion of glucose carbon into protein in the brain and other organs of the rat. J Neurochem. 1962 Sep-Oct;9:465–475. doi: 10.1111/j.1471-4159.1962.tb04199.x. [DOI] [PubMed] [Google Scholar]
  28. VRBA R. Glucose metabolism in rat brain in vivo. Nature. 1962 Aug 18;195:663–665. doi: 10.1038/195663a0. [DOI] [PubMed] [Google Scholar]
  29. VRBA R. UTILIZATION OF GLUCOSE CARBON IN VIVO IN THE MOUSE. Nature. 1964 Apr 18;202:247–249. doi: 10.1038/202247a0. [DOI] [PubMed] [Google Scholar]
  30. WINZLER R. J., MOLDAVE K., RAFELSON M. E., Jr, PEARSON H. E. Conversion of glucose to amino acids by brain and liver of the new-born mouse. J Biol Chem. 1952 Dec;199(2):485–492. [PubMed] [Google Scholar]
  31. von HOLT, SCHMIDT H., FELDMANN H. [The portion of glucose oxidation in carbon dioxide production in the rat]. Biochem Z. 1961;334:545–559. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES