Abstract
1. A microsomal fraction from ox cerebral cortex catalysed [14C]ADP–ATP exchange at a speed similar to that at which it liberated Pi from ATP in the presence of Na+, K+ and Mg2+. 2. Repeated washing the fraction with MgATP solutions solubilized most of the exchange activity and left the adenosine triphosphatase insoluble and little changed in activity. The exchange activity was accompanied by negligible adenosine-triphosphatase activity and was enriched by precipitation at chosen pH and by DEAE-Sephadex. At no stage was its activity affected by Na+, K+ or ouabain. 3. The washed microsomal fraction was exposed to a variety of reagents; a sodium iodide–cysteine treatment increased both adenosine-triphosphatase and exchange activities, as also did a synthetic zeolite. Preparations were obtained with exchange activities less than 3% of their Na+-plus-K+-stimulated adenosine-triphosphatase activity. Some contribution to the residual exchange activity was made by an adenylate kinase. 4. Thus over 95% of the microsomal ADP–ATP-exchange activity does not take part in the Na+-plus-K+-stimulated adenosine-triphosphatase reaction. Participation of some of the residual 3% of the ADP–ATP-exchange activity has not been excluded, but there appears no firm evidence for its participation in the adenosine triphosphatase; the bearing of this conclusion on mechanisms proposed for the Na+-plus-K+-stimulated adenosine triphosphatase is indicated.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERS R. W., FAHN S., KOVAL G. J. THE ROLE OF SODIUM IONS IN THE ACTIVATION OF ELECTROPHORUS ELECTRIC ORGAN ADENOSINE TRIPHOSPHATASE. Proc Natl Acad Sci U S A. 1963 Sep;50:474–481. doi: 10.1073/pnas.50.3.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEUL D. H., McILWAIN H. Activation and inhibition of adenosine triphosphatases of subcellular particles from the brain. J Neurochem. 1961 Dec;8:246–256. doi: 10.1111/j.1471-4159.1961.tb13550.x. [DOI] [PubMed] [Google Scholar]
- KAUFMAN S. Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J Biol Chem. 1955 Sep;216(1):153–164. [PubMed] [Google Scholar]
- KOSHLAND D. E., Jr, BUDENSTEIN Z., KOWALSKY A. Mechanism of hydrolysis of adenosinetriphosphate catalyzed by purified muscle proteins. J Biol Chem. 1954 Nov;211(1):279–287. [PubMed] [Google Scholar]
- LEVINTOW L., MEISTER A. Reversibility of the enzymatic synthesis of glutamine. J Biol Chem. 1954 Jul;209(1):265–280. [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V. THE RELATIONSHIPS BETWEEN SUBSTRATES AND ENZYMES OF GLYCOLYSIS IN BRAIN. J Biol Chem. 1964 Jan;239:31–42. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Nagano K., Kanazawa T., Mizuno N., Tashima Y., Nakao T., Nakao M. Some acyl phosphate-like properties of P32-labeled sodium-potassium-activated adenosine triphosphatase. Biochem Biophys Res Commun. 1965 Jun 9;19(6):759–764. doi: 10.1016/0006-291x(65)90324-4. [DOI] [PubMed] [Google Scholar]
- Nakao T., Tashima Y., Nagano K., Nakao M. Highly specific sodium-potassium-activated adenosine triphosphatase from various tissues of rabbit. Biochem Biophys Res Commun. 1965 Jun 9;19(6):755–758. doi: 10.1016/0006-291x(65)90323-2. [DOI] [PubMed] [Google Scholar]
- POST R. L., SEN A. K. AN ENZYMATIC MECHANISM OF ACTIVE SODIUM AND POTASSIUM TRANSPORT. J Histochem Cytochem. 1965 Feb;13:105–112. doi: 10.1177/13.2.105. [DOI] [PubMed] [Google Scholar]
- POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
- Person P., Zipper H. Disruption of mitochondria and solubilization of cytochrome oxidase by a synthetic zeolite. Biochem Biophys Res Commun. 1964 Oct 14;17(3):225–230. doi: 10.1016/0006-291x(64)90388-2. [DOI] [PubMed] [Google Scholar]
- SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
- SATO T. R., THOMSON J. F., DANFORTH W. F. Electrochromatographic separation of inorganic phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. Anal Biochem. 1963 Jun;5:542–547. doi: 10.1016/0003-2697(63)90074-5. [DOI] [PubMed] [Google Scholar]
- SCHWARTZ A., BACHELARD H. S., McIL WAIN H. The sodium-stimulated adenosine-triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 1962 Sep;84:626–637. doi: 10.1042/bj0840626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SNOKE J. E., BLOCH K. Studies on the mechanism of action of glutathione synthetase. J Biol Chem. 1955 Apr;213(2):825–835. [PubMed] [Google Scholar]
- Swanson P. D., Bradford H. F., McIlwain H. Stimulation and solubilization of the sodium ion-activated adenosine triphosphatase of cerebral microsomes by surface-active agents, especially polyoxyethylene ethers: actions of phospholipases and a neuraminidase. Biochem J. 1964 Aug;92(2):235–247. doi: 10.1042/bj0920235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson P. D., Stah W. L. The adenosine diphosphate--adenosine triposphate-excange reaction of cerebral microsomes and its relation to he sodium ion-stimulatd adenosine-triphosphatase reaction. Biochem J. 1966 May;99(2):396–403. doi: 10.1042/bj0990396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokiwa T., Tonomura Y. The pre-steady state of the myosin-adenosine triphosphate system. II. Initial rapid absorption and liberation of hydrogen ion followed by a stopped-flow method. J Biochem. 1965 May;57(5):616–626. [PubMed] [Google Scholar]
- WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]
- YOUNT R. G., KOSHLAND D. E., Jr Properties of the O18 exchange reaction catalyzed by heavy meromyosin. J Biol Chem. 1963 May;238:1708–1713. [PubMed] [Google Scholar]
