Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Jun;99(3):513–520. doi: 10.1042/bj0990513

A specific requirement for biotin in the synthesis of ornithine carbamoyltransferase by yeast

B Dixon 1, A H Rose 1
PMCID: PMC1265035  PMID: 5964954

Abstract

1. Growth of a biotin-requiring strain of Saccharomyces cerevisiae in a medium containing a suboptimum concentration of biotin for growth caused a decreased synthesis of ornithine carbamoyltransferase as compared with yeast grown in a medium containing an optimum concentration of biotin. Inclusion of the biotin homologues norbiotin or homobiotin, but not bishomobiotin, in the biotin-deficient medium caused an appreciable increase in ornithine carbamoyltransferase synthesis without affecting growth or synthesis of total RNA and protein. The addition of norbiotin to biotin-deficient medium had no effect on the respiratory activity of the yeast or on the synthesis of aspartate carbamoyltransferase, acid phosphatase, β-fructofuranosidase or malate dehydrogenase. 2. Synthesis of acetylornithine deacetylase and acetylornithine acetyltransferase was slightly diminished by the imposition of biotin deficiency, but the effect was not as great as on ornithine carbamoyltransferase synthesis. Incorporation of norbiotin in the biotin-deficient medium had no marked effect on the synthesis of any other arginine-pathway enzyme except ornithine carbamoyltransferase. 3. l-Ornithine induced synthesis of ornithine carbamoyltransferase in yeast grown in biotin-deficient medium, but in yeast grown in this medium supplemented with norbiotin it repressed synthesis of the enzyme. l-Arginine had no detectable effect on ornithine carbamoyltransferase synthesis by the yeast grown in biotin-deficient medium with or without norbiotin. l-Aspartate repressed synthesis of ornithine carbamoyltransferase in biotin-deficient yeast and completely nullified the stimulatory effect of norbiotin on synthesis of the enzyme in this yeast. 4. There was no increase in ornithine carbamoyltransferase synthesis in biotin-deficient yeast incubated in phosphate buffer, pH4·5, containing glucose and biotin or norbiotin. In biotin-deficient yeast suspended in complete medium containing an optimum concentration of biotin, there was an increase in ornithine carbamoyltransferase synthesis only after the onset of growth.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABLES P. G., RAVEL J. M., SHIVE W. The indirect role of biotin in the synthesis of the malic enzyme. J Biol Chem. 1961 Dec;236:3263–3266. [PubMed] [Google Scholar]
  2. AHMAD F., ROSE A. H., GARG N. K. Effect of biotin deficiency on the synthesis of nucleic acids and protein by Saccharomyces cerevisiae. J Gen Microbiol. 1961 Jan;24:69–80. doi: 10.1099/00221287-24-1-69. [DOI] [PubMed] [Google Scholar]
  3. AHMAD F., ROSE A. H. The role of biotin in the regulation of enzyme synthesis in yeast. Arch Biochem Biophys. 1962 May;97:302–308. doi: 10.1016/0003-9861(62)90082-6. [DOI] [PubMed] [Google Scholar]
  4. ALBRECHT A. M., VOGEL H. J. ACETYLORNITHINE DELTA-TRANSAMINASE. PARTIAL PURIFICATION AND REPRESSION BEHAVIOR. J Biol Chem. 1964 Jun;239:1872–1876. [PubMed] [Google Scholar]
  5. BLANCHARD M. L., KORKES S., DEL CAMPILLO A., OCHOA S. Function of biotin in the metabolism of Lactobacillus arabinosus. J Biol Chem. 1950 Dec;187(2):875–890. [PubMed] [Google Scholar]
  6. DE DEKEN R. H. Pathway of arginine biosynthesis in yeast. Biochem Biophys Res Commun. 1962 Aug 31;8:462–466. doi: 10.1016/0006-291x(62)90297-8. [DOI] [PubMed] [Google Scholar]
  7. DIXON B., ROSE A. H. ON THE SYNTHESIS OF ORNITHINE CARBAMOYLTRANSFERASE IN BIOTIN-DEFICIENT SACCHAROMYCES CEREVISIAE. J Gen Microbiol. 1964 Feb;34:229–240. doi: 10.1099/00221287-34-2-229. [DOI] [PubMed] [Google Scholar]
  8. DUERRE J. A., LICHSTEIN H. C. Malic enzyme induction by lactic acid bacteria. II. Purine and pyrimidine requirements. Can J Microbiol. 1961 Apr;7:217–226. doi: 10.1139/m61-028. [DOI] [PubMed] [Google Scholar]
  9. GORINI L., GUNDERSEN W., BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. doi: 10.1101/sqb.1961.026.01.022. [DOI] [PubMed] [Google Scholar]
  10. HAGEN P. O., ROSE A. H. Studies on the biochemical basis of the low maximum temperature in a psychrophilic cryptococcus. J Gen Microbiol. 1962 Jan;27:89–99. doi: 10.1099/00221287-27-1-89. [DOI] [PubMed] [Google Scholar]
  11. KOSOW D. P., HUANG S. C., LANE M. D. Propionyl holocarboxylase synthesis. I. Preparation and properties of the enzyme system. J Biol Chem. 1962 Dec;237:3633–3639. [PubMed] [Google Scholar]
  12. Kaziro Y., Leone E., Ochoa S. BIOTIN AND PROPIONYL CARBOXYLASE. Proc Natl Acad Sci U S A. 1960 Oct;46(10):1319–1327. doi: 10.1073/pnas.46.10.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROBERTS N. R., WU M. L., HIXON W. S., CRAWFORD E. J. The quantitative histochemistry of brain. II. Enzyme measurements. J Biol Chem. 1954 Mar;207(1):19–37. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MIDDELHOVEN W. J. THE ORNITHINE PATHWAY IN THE YEAST CANDIDA UTILIS. Biochim Biophys Acta. 1963 Sep 3;77:152–154. doi: 10.1016/0006-3002(63)90482-7. [DOI] [PubMed] [Google Scholar]
  16. Markham R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 1942 Dec;36(10-12):790–791. doi: 10.1042/bj0360790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NICKERSON W. J., ROSE A. H. Secretion of nicotinic acid by biotin-dependent yeasts. J Bacteriol. 1956 Sep;72(3):324–328. doi: 10.1128/jb.72.3.324-328.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PARDEE A. B., YATES R. A. Pyrimidine biosynthesis in Escherichia coli. J Biol Chem. 1956 Aug;221(2):743–756. [PubMed] [Google Scholar]
  19. RAVEL J. M., MOLLENHAUER B. F., SHIVE W. The indirect role of biotin in the synthesis of ornithine transcarbamyiase. J Biol Chem. 1961 Aug;236:2268–2270. [PubMed] [Google Scholar]
  20. ROSE A. H. Excretion of nicotinic acid by biotin-deficient Saccharomyces cerevisiae. J Gen Microbiol. 1960 Aug;23:143–152. doi: 10.1099/00221287-23-1-143. [DOI] [PubMed] [Google Scholar]
  21. ROSENBERG H., ENNOR A. H., MORRISON J. F. The estimation of arginine. Biochem J. 1956 May;63(1):153–159. doi: 10.1042/bj0630153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  23. WOOD H. G., STJERNHOLM R. Transcarboxylase. II. Purification and properties of methylmalonyl-oxaloacetic transcarboxylase. Proc Natl Acad Sci U S A. 1961 Mar 15;47:289–303. doi: 10.1073/pnas.47.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES