Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Jul;100(1):1–6. doi: 10.1042/bj1000001

The role of shikimic acid in the biosynthesis of vitamin K2

Graeme B Cox 1, Frank Gibson 1
PMCID: PMC1265084  PMID: 5337721

Abstract

1. Shikimic acid was shown to be a precursor of vitamin K2 (MK-8) in Escherichia coli. 2. The benzene ring of the naphthaquinone arises from shikimic acid. 3. The methyl group of methionine is incorporated into vitamin K2. 4. A scheme relating the biosynthesis of vitamin K2 and ubiquinone to the general pathway of aromatic biosynthesis is proposed.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AZERAD R., BLEILER-HILL R., LEDERER E. BIOSYNTHESIS OF A VITAMIN K2 BY CELL-FREE EXTRACTS OF MYCOBACTERIUM PHLEI. Biochem Biophys Res Commun. 1965 Apr 9;19:194–197. doi: 10.1016/0006-291x(65)90503-6. [DOI] [PubMed] [Google Scholar]
  2. BENTLEY R., RAMSEY V. G., SPRINGER C. M., DIALAMEH G. H., OLSON R. E. APPLICATION OF A CHEMICAL DEGRADATION OF COENZYME Q TO PROBLEMS OF BIOSYNTHESIS. Biochemistry. 1965 Jan;4:166–176. doi: 10.1021/bi00877a025. [DOI] [PubMed] [Google Scholar]
  3. BISHOP D. H., PANDYA K. P., KING H. K. Ubiquinone and vitamin K in bacteria. Biochem J. 1962 Jun;83:606–614. doi: 10.1042/bj0830606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COX G. B., GIBSON F. BIOSYNTHESIS OF VITAMIN K AND UBIQUINONE. RELATION TO THE SHIKIMIC ACID PATHWAY IN ESCHERICHIA COLI. Biochim Biophys Acta. 1964 Oct 9;93:204–206. doi: 10.1016/0304-4165(64)90285-5. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. D. Aromatic biosynthesis. IV. Preferential conversion, in incompletely blocked mutants, of a common precursor of several metabolites. J Bacteriol. 1952 Nov;64(5):729–748. doi: 10.1128/jb.64.5.729-748.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GATENBECK S., BENTLEY R. NAPHTHAQUINONE BIOSYNTHESIS IN MOULDS: THE MECHANISM FOR FORMATION OF JAVANICIN. Biochem J. 1965 Feb;94:478–481. doi: 10.1042/bj0940478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson M. I., Gibson F. Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem J. 1964 Feb;90(2):248–256. doi: 10.1042/bj0900248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LESTER R. L., CRANE F. L. The natural occurrence of coenzyme Q and related compounds. J Biol Chem. 1959 Aug;234(8):2169–2175. [PubMed] [Google Scholar]
  9. PARSON W. W., RUDNEY H. THE BIOSYNTHESIS OF THE BENZOQUINONE RING OF UBIQUINONE FROM P-HYDROXYBENZALDEHYDE AND P-HYDROXYBENZOIC ACID IN RAT KIDNEY, AZOTOBACTER VINELANDII, AND BAKER'S YEAST. Proc Natl Acad Sci U S A. 1964 Mar;51:444–450. doi: 10.1073/pnas.51.3.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PARSON W. W., RUDNEY H. THE BIOSYNTHESIS OF UBIQUINONE AND RHODOQUINONE FROM P-HYDROXYBENZOATE AND P-HYDROXYBENZALDEHYDE IN RHODOSPIRILLUM RUBRUM. J Biol Chem. 1965 Apr;240:1855–1863. [PubMed] [Google Scholar]
  11. PITTARD A. J., GIBSON F., DOY C. H. A possible relationship between the formation of o-dihydric phenols and tryptophan biosynthesis by Aerobacter aerogens. Biochim Biophys Acta. 1962 Feb 26;57:290–298. doi: 10.1016/0006-3002(62)91122-8. [DOI] [PubMed] [Google Scholar]
  12. PITTARD A. J., GIBSON F., DOY C. H. Phenolic compounds accumulated by washed cell suspensions of a tryptophan auxotroph of Aerobacter aerogenes. Biochim Biophys Acta. 1961 May 27;49:485–494. doi: 10.1016/0006-3002(61)90245-1. [DOI] [PubMed] [Google Scholar]
  13. Scholes P. B., King H. K. Electron transport in a Park-Williams strain of Corynebacterium diphtheriae. Biochem J. 1965 Dec;97(3):754–765. doi: 10.1042/bj0970754. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES