Abstract
1. Washed guinea-pig cerebral-cortex mitochondria incorporate [14C]leucine into their protein at a rate comparable with the rates reported for liver or heart mitochondria only if the mitochondria are separated from myelin and nerve endings by density-gradient centrifugation. 2. The non-mitochondrial components (myelin and nerve endings) of brain mitochondrial preparations incorporated [14C]leucine at a negligible rate. 3. The mitochondria do not require an exogenous supply of energy or a full supply of amino acids to support the process. 4. The incorporation rate was linear up to 2hr. aerobic incubation at 30° and was inhibited by chloramphenicol, only slightly by actinomycin D and not by penicillin or pretreatment with ribonuclease. The observed incorporation is considered to be unlikely to be due to contaminating cytoplasmic ribosomes or bacteria. 5. The process was also studied in mitochondrial preparations from rabbit cerebral cortex and spinal cord.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDRIDGE W. N., JOHNSON M. K. Cholinesterase, succinic dehydrogenase, nucleic acids, esterase and glutathione reductase in sub-cellular fractions from rat brain. Biochem J. 1959 Oct;73:270–276. doi: 10.1042/bj0730270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRAUN G. A., MARSH J. B., DRABKIN D. L. AMINO ACID INCORPORATION INTO PROTEIN BY LIVER MITOCHONDRIA FROM NEPHROTIC AND PARTIALLY HEPATECTOMIZED RATS. Biochim Biophys Acta. 1963 Aug 20;72:645–647. [PubMed] [Google Scholar]
- CLOUET D. H., RICHTER D. The incorporation of [35S] labelled methionine into the proteins of the rat brain. J Neurochem. 1959 Jan;3(3):219–229. doi: 10.1111/j.1471-4159.1959.tb12628.x. [DOI] [PubMed] [Google Scholar]
- CLOUET D. H., WAELSCH H. Amino acid and protein metabolism of the brain--VIII. The recovery of cholinesterase in the nervous system of the frog after inhibition. J Neurochem. 1961 Dec;8:201–215. doi: 10.1111/j.1471-4159.1961.tb13544.x. [DOI] [PubMed] [Google Scholar]
- ELAEV N. R. ISSLEDOVANIE METABOLICHESKO I AKTIVNOSTI TSITOPLAZMATICHESKIKH, IADERNYKH I MITOKHONDRIAL'NYKH RIBOSOM. Biokhimiia. 1964 May-Jun;29:413–419. [PubMed] [Google Scholar]
- FRASER M. J., GUTFREUND H. Steps in amino-acid incorporation into mammary tissue. Proc R Soc Lond B Biol Sci. 1958 Dec 17;149(936):392–400. doi: 10.1098/rspb.1958.0078. [DOI] [PubMed] [Google Scholar]
- FURST S., LAJTHA A., WAELSCH H. Amino acid and protein metabolism of the brain. III. Incoporation of lysine into the proteins of various brain areas and their cellular fractions. J Neurochem. 1958;2(2-3):216–225. doi: 10.1111/j.1471-4159.1958.tb12367.x. [DOI] [PubMed] [Google Scholar]
- GALE E. F. MECHANISMS OF ANTIBIOTIC ACTION. Pharmacol Rev. 1963 Sep;15:481–530. [PubMed] [Google Scholar]
- GOLDBERG I. H., REICH E. ACTINOMYCIN INHIBITION OF RNA SYNTHESIS DIRECTED BY DNA. Fed Proc. 1964 Sep-Oct;23:958–964. [PubMed] [Google Scholar]
- HESS A., LANSING A. I. The fine structure of peripheral nerve fibers. Anat Rec. 1953 Oct;117(2):175–199. doi: 10.1002/ar.1091170205. [DOI] [PubMed] [Google Scholar]
- KALF G. F. DEOXYRIBONUCLEIC ACID IN MITOCHONDRIA AND ITS ROLE IN PROTEIN SYNTHESIS. Biochemistry. 1964 Nov;3:1702–1706. doi: 10.1021/bi00899a018. [DOI] [PubMed] [Google Scholar]
- KALF G. F., SIMPSON M. V. The incorporation of valine-1C14 into the protein of submitochondrial fractions. J Biol Chem. 1959 Nov;234:2943–2947. [PubMed] [Google Scholar]
- KALF G. F. The incorporation of leucine-1-C-14 into the protein of rat heart sarcosomes: an investigation of optimal conditions. Arch Biochem Biophys. 1963 May;101:350–359. doi: 10.1016/s0003-9861(63)80023-5. [DOI] [PubMed] [Google Scholar]
- KLEE C. B., SOKOLOFF L. MITOCHONDRIAL DIFFERENCES IN MATURE AND IMMATURE BRAIN; INFLUENCE ON RATE OF AMINO ACID INCORPORATION INTO PROTEIN AND RESPONSES TO THYROXINE. J Neurochem. 1964 Oct;11:709–716. doi: 10.1111/j.1471-4159.1964.tb06116.x. [DOI] [PubMed] [Google Scholar]
- KOENIG E. SYNTHETIC MECHANISMS IN THE AXON. I. LOCAL AXONAL SYNTHESIS OF ACETYLCHOLINESTERASE. J Neurochem. 1965 May;12:343–355. doi: 10.1111/j.1471-4159.1965.tb04235.x. [DOI] [PubMed] [Google Scholar]
- KOENIG E. SYNTHETIC MECHANISMS IN THE AXON. II. RNA IN MYELIN-FREE AXONS OF THE CAT. J Neurochem. 1965 May;12:357–361. doi: 10.1111/j.1471-4159.1965.tb04236.x. [DOI] [PubMed] [Google Scholar]
- KROON A. M. PROTEIN SYNTHESIS IN MITOCHONDRIA. II. A COMPARISON OF MITOCHONDRIA FROM LIVER AND HEART WITH SPECIAL REFERENCE TO THE ROLE OF OXIDATIVE PHOSPHORYLATION. Biochim Biophys Acta. 1964 Sep 11;91:145–154. [PubMed] [Google Scholar]
- KROON A. M. Protein synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beefheart mitochondria and fractions derived from them by sonic oscillation. Biochim Biophys Acta. 1963 Jul 30;72:391–402. doi: 10.1016/0006-3002(63)90258-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUCK D. J., REICH E. DNA IN MITOCHONDRIA OF NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1964 Oct;52:931–938. doi: 10.1073/pnas.52.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAGER J. Chloramphenicol and chlortetracycline inhibition of amino acid incorporation into proteins in a cell-free system from Tetrahymena pyriformis. Biochim Biophys Acta. 1960 Feb 12;38:150–152. doi: 10.1016/0006-3002(60)91207-5. [DOI] [PubMed] [Google Scholar]
- McLEAN J. R., COHN G. L., BRANDT I. K., SIMPSON M. V. Incorporation of labeled amino acids into the protein of muscle and liver mitochondria. J Biol Chem. 1958 Sep;233(3):657–663. [PubMed] [Google Scholar]
- PALAY S. L., PALADE G. E. The fine structure of neurons. J Biophys Biochem Cytol. 1955 Jan;1(1):69–88. doi: 10.1083/jcb.1.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROODYN D. B., REIS P. J., WORK T. S. Protein synthesis in mitochondria. Requirements for the incorporation of radioactive amino acids into mitochondrial protein. Biochem J. 1961 Jul;80:9–21. doi: 10.1042/bj0800009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHWARTZ A., BACHELARD H. S., McIL WAIN H. The sodium-stimulated adenosine-triphosphatase activity and other properties of cerebral microsomal fractions and subfractions. Biochem J. 1962 Sep;84:626–637. doi: 10.1042/bj0840626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIMPSON M. V., MCLEAN J. R. The incorporation of labeled amino acids into the cytoplasmic particles of rat muscle. Biochim Biophys Acta. 1955 Dec;18(4):573–575. doi: 10.1016/0006-3002(55)90156-6. [DOI] [PubMed] [Google Scholar]
- SUZUKI K., KOREY S. R., TERRY R. D. STUDIES ON PROTEIN SYNTHESIS IN BRAIN MICROSOMAL SYSTEM. J Neurochem. 1964 Jun;11:403–412. doi: 10.1111/j.1471-4159.1964.tb11599.x. [DOI] [PubMed] [Google Scholar]
- Truman D. E. The fractionation of proteins from ox-heart mitochondria labelled in vitro with radioactive amino acids. Biochem J. 1964 Apr;91(1):59–64. doi: 10.1042/bj0910059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEBSTER H. D. Transient, focal accumulation of axonal mitochondria during the early stages of wallerian degeneration. J Cell Biol. 1962 Feb;12:361–383. doi: 10.1083/jcb.12.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISBERGER A. S., WOLFE S. EFFECT OF CHLORAMPHENICOL ON PROTEIN SYNTHESIS. Fed Proc. 1964 Sep-Oct;23:976–983. [PubMed] [Google Scholar]
- WHITTAKER V. P. The isolation and characterization of acetylcholine-containing particles from brain. Biochem J. 1959 Aug;72:694–706. doi: 10.1042/bj0720694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ZOMZELY C. E., ROBERTS S., RAPAPORT D. REGULATION OF CEREBRAL METABOLISM OF AMINO ACIDS-3. CHARACTERISTICS OF AMINO ACID INCORPORATION INTO PROTEIN OF MICROSOMAL AND RIBOSOMAL PREPARATIONS OF RAT CEREBRAL CORTEX. J Neurochem. 1964 Aug;11:567–582. doi: 10.1111/j.1471-4159.1964.tb11454.x. [DOI] [PubMed] [Google Scholar]