Abstract
1. The efficiency of extracting nucleic acids from Escherichia coli after five methods of obtaining cell lysis was determined. 2. The recovery of various nucleic acid species isolated after chromatography on methylated albumin-coated kieselguhr was also examined. 3. Double-stranded coliphage-induced RNA was isolated from infected bacteria and its resistance to ribonuclease digestion under various conditions determined. 4. The involvement of double-stranded RNA during the infection process was demonstrated. 5. The time-course of the syntheses in infected cells of double-stranded RNA, DNA, single-stranded coliphage and 16s ribosomal RNA, transfer RNA and ribosomal 23s RNA was examined. 6. It was demonstrated that the syntheses of DNA, transfer RNA and ribosomal RNA decreased 10–15min. after infection. 7. Synthesis of coliphage RNA commenced 10–15min. after infection and double-stranded RNA was also synthesized from about 10min. after coliphage adsorption.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMMANN J., DELIUS H., HOFSCHNEIDER P. H. ISOLATION AND PROPERTIES OF AN INTACT PHAGE-SPECIFIC REPLICATIVE FORM OF RNA PHAGE M12. J Mol Biol. 1964 Dec;10:557–561. doi: 10.1016/s0022-2836(64)80079-6. [DOI] [PubMed] [Google Scholar]
- BISHOP D. H., BRADLEY D. E. DETERMINATION OF BASE RATIOS OF SIX RIBONUCLEIC ACID BACTERIOPHAGES SPECIFIC TO ESCHERICHIA COLI. Biochem J. 1965 Apr;95:82–93. doi: 10.1042/bj0950082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRADLEY D. E. THE STRUCTURE OF SOME BACTERIOPHAGES ASSOCIATED WITH MALE STRAINS OF ESCHERICHIA COLI. J Gen Microbiol. 1964 Jun;35:471–482. doi: 10.1099/00221287-35-3-471. [DOI] [PubMed] [Google Scholar]
- BRINTON C. C., Jr, GEMSKI P., Jr, CARNAHAN J. A NEW TYPE OF BACTERIAL PILUS GENETICALLY CONTROLLED BY THE FERTILITY FACTOR OF E. COLI K 12 AND ITS ROLE IN CHROMOSOME TRANSFER. Proc Natl Acad Sci U S A. 1964 Sep;52:776–783. doi: 10.1073/pnas.52.3.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop D. H. Ribonucleic acid synthesis by Escherichia coli C3000/L after infection by the ribonucleic acid coliphage ZIK/1, and properties of coliphage-ZIK/1 ribonucleic acid. Biochem J. 1965 Oct;97(1):17–26. doi: 10.1042/bj0970017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop D. H., Roche C., Nisman B. Induction of alkaline phosphatase in a subcellular preparation from Escherichia coli. Biochem J. 1964 Feb;90(2):378–391. doi: 10.1042/bj0900378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERIKSON R. L., FENWICK M. L., FRANKLIN R. M. REPLICATION OF BACTERIOPHAGE RNA: STUDIES ON THE FATE OF PARENTAL RNA. J Mol Biol. 1964 Dec;10:519–529. doi: 10.1016/s0022-2836(64)80070-x. [DOI] [PubMed] [Google Scholar]
- FENWICK M. L., ERIKSON R. L., FRANKLIN R. M. REPLICATION OF THE RNA OF BACTERIOPHAGE R17. Science. 1964 Oct 23;146(3643):527–530. doi: 10.1126/science.146.3643.527. [DOI] [PubMed] [Google Scholar]
- FRAENKEL-CONRAT H., SINGER B., TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. doi: 10.1016/0042-6822(61)90131-3. [DOI] [PubMed] [Google Scholar]
- GEIDUSCHEK E. P. On the factors controlling the reversibility of DNA denaturation. J Mol Biol. 1962 Jun;4:467–487. doi: 10.1016/s0022-2836(62)80103-x. [DOI] [PubMed] [Google Scholar]
- Haruna I., Spiegelman S. Specific template requirments of RNA replicases. Proc Natl Acad Sci U S A. 1965 Aug;54(2):579–587. doi: 10.1073/pnas.54.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAERNER H. C., HOFFMANN-BERLING H. SYNTHESIS OF DOUBLE-STRANDED RNA IN RNA-PHAGE INFECTED E. COLI CELLS. Nature. 1964 Jun 6;202:1012–1013. doi: 10.1038/2021012a0. [DOI] [PubMed] [Google Scholar]
- KELLY R. B., GOULD J. L., SINSHEIMER R. L. THE REPLICATION OF BACTERIOPHAGE MS2. IV. RNA COMPONENTS SPECIFICALLY ASSOCIATED WITH INFECTION. J Mol Biol. 1965 Mar;11:562–575. doi: 10.1016/s0022-2836(65)80011-0. [DOI] [PubMed] [Google Scholar]
- KELLY R. B., SINSHEIMER R. L. A NEW RNA COMPONENT IN MS2-INFECTED CELLS. J Mol Biol. 1964 Apr;8:602–605. doi: 10.1016/s0022-2836(64)80015-2. [DOI] [PubMed] [Google Scholar]
- KIRBY K. S. Ribonucleic acids. II. Improved preparation of rat-liver ribonucleic acid. Biochim Biophys Acta. 1962 Apr 2;55:545–546. doi: 10.1016/0006-3002(62)90988-5. [DOI] [PubMed] [Google Scholar]
- LEVEY R. H., TRAININ N., LAW L. W., BLACK P. H., ROWE W. P. LYMPHOCYTIC CHORIOMENINGITIS INFECTION IN NEONATALLY THYMECTOMIZED MICE BEARING DIFFUSION CHAMBERS CONTAINING THYMUS. Science. 1963 Oct 25;142(3591):483–485. [PubMed] [Google Scholar]
- LOEB T., ZINDER N. D. A bacteriophage containing RNA. Proc Natl Acad Sci U S A. 1961 Mar 15;47:282–289. doi: 10.1073/pnas.47.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
- NONOYAMA M., IKEDA Y. RIBONUCLEASE-RESISTANT RNA FOUND IN CELLS OF ESCHERICHIA COLI INFECTED WITH RNA PHAGE. J Mol Biol. 1964 Sep;9:763–771. doi: 10.1016/s0022-2836(64)80181-9. [DOI] [PubMed] [Google Scholar]
- SUEOKA N., CHENG T. Y. Fractionation of nucleic acids with the methylated albumin column. J Mol Biol. 1962 Mar;4:161–172. doi: 10.1016/s0022-2836(62)80048-5. [DOI] [PubMed] [Google Scholar]
- WEISSMANN C., BORST P., BURDON R. H., BILLETER M. A., OCHOA S. REPLICATION OF VIRAL RNA, III. DOUBLE-STRANDED REPLICATIVE FORM OF MSW PHAGE RNA. Proc Natl Acad Sci U S A. 1964 Apr;51:682–690. doi: 10.1073/pnas.51.4.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEISSMANN C., BORST P., BURDON R. H., BILLETER M. A., OCHOA S. REPLICATION OF VIRAL RNA. IV. PROPERTIES OF RNA SYNTHETASE AND ENZYMATIC SYNTHESIS OF MS2 PHAGE RNA. Proc Natl Acad Sci U S A. 1964 May;51:890–897. doi: 10.1073/pnas.51.5.890. [DOI] [PMC free article] [PubMed] [Google Scholar]