Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Sep;100(3):762–767. doi: 10.1042/bj1000762

Temperature-dependence of activation and inhibition of rat-brain adenosine triphosphatase activated by sodium and potassium ions

N Gruener 1, Y Avi-Dor 1
PMCID: PMC1265212  PMID: 16742417

Abstract

1. The adenosine-triphosphatase activity of rat-brain microsomes was measured between 0° and 37°. The stimulatory effect of Na+ plus K+ on the Mg2+-dependent adenosine-triphosphatase activity decreased sharply with decreasing temperature and became negligible at 0°. An Arrhenius plot drawn from the experimental data showed two discontinuities: one at about 6° and the other at about 20°. 2. The increment in activity induced by Na+ plus K+ was more sensitive to oligomycin at lower than at higher temperatures, but the opposite was observed for ouabain. The action of oligomycin showed a biphasic character, since below a certain concentration it caused slight activation of Na+-plus-K+-activated adenosine triphosphatase. 3. Where oligomycin increased the activity of the enzyme, it also enhanced the accumulation of an acid-precipitable phosphorylated compound formed through the transfer of the γ-phosphate group of [32P]ATP to the enzyme system. Stimulatory concentrations of oligomycin did not interfere with K+-mediated dephosphorylation of the intermediate, though high concentrations of oligomycin counteracted the effect of K+. 4. The temperature profile of K+-stimulated microsomal phosphatase qualitatively resembled that of microsomal adenosine triphosphatase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AHMED K., JUDAH J. D. PREPARATION OF LIPOPROTEINS CONTAINING CATION-DEPENDENT ATPASE. Biochim Biophys Acta. 1964 Dec 9;93:603–613. doi: 10.1016/0304-4165(64)90343-5. [DOI] [PubMed] [Google Scholar]
  2. ALBERS R. W., FAHN S., KOVAL G. J. THE ROLE OF SODIUM IONS IN THE ACTIVATION OF ELECTROPHORUS ELECTRIC ORGAN ADENOSINE TRIPHOSPHATASE. Proc Natl Acad Sci U S A. 1963 Sep;50:474–481. doi: 10.1073/pnas.50.3.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
  4. Ahmed K., Judah J. D. Identification of active phosphoprotein in a cation-activated adenosine triphosphatase. Biochim Biophys Acta. 1965 Jun 15;104(1):112–120. doi: 10.1016/0304-4165(65)90227-8. [DOI] [PubMed] [Google Scholar]
  5. Ahmed K., Judah J. D. On the action of strophanthin G. Can J Biochem. 1965 Jul;43(7):877–880. doi: 10.1139/o65-100. [DOI] [PubMed] [Google Scholar]
  6. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. JOBSIS F. F. A study of preparative procedures for brain mitochondria. Biochim Biophys Acta. 1963 Jul 2;74:60–68. doi: 10.1016/0006-3002(63)91329-5. [DOI] [PubMed] [Google Scholar]
  9. LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
  10. LEE C. P., ERNSTER L. RESTORATION OF OXIDATIVE PHOSPHORYLATION IN NON-PHOSPHORYLATING SUBMITOCHONDRIAL PARTICLES BY OLIGOMYCIN. Biochem Biophys Res Commun. 1965 Feb 17;18:523–529. doi: 10.1016/0006-291x(65)90785-0. [DOI] [PubMed] [Google Scholar]
  11. LEVY H. M., SHARON N., KOSHLAND D. E., Jr A mechanism for the effects of dinitrophenol and temperature on the hydrolytic activity of myosin. Biochim Biophys Acta. 1959 May;33(1):288–289. doi: 10.1016/0006-3002(59)90542-6. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. NIELSEN S. O., LEHNINGER A. L. Phosphorylation coupled to the oxidation of ferrocytochrome c. J Biol Chem. 1955 Aug;215(2):555–570. [PubMed] [Google Scholar]
  14. Opit L. J., Charnock J. S. A molecular model for a sodium pump. Nature. 1965 Oct 30;208(5009):471–474. doi: 10.1038/208471a0. [DOI] [PubMed] [Google Scholar]
  15. PAGE E., GOERKE R. J., STORM S. R. CAT HEART MUSCLE IN VITRO. IV. INHIBITION OF TRANSPORT IN QUIESCENT MUSCLES. J Gen Physiol. 1964 Jan;47:531–543. doi: 10.1085/jgp.47.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. POST R. L., SEN A. K., ROSENTHAL A. S. A PHOSPHORYLATED INTERMEDIATE IN ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT ACROSS KIDNEY MEMBRANES. J Biol Chem. 1965 Mar;240:1437–1445. [PubMed] [Google Scholar]
  17. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  18. SKOU J. C. Preparation from mammallian brain and kidney of the enzyme system involved in active transport of Na ions and K ions. Biochim Biophys Acta. 1962 Apr 9;58:314–325. doi: 10.1016/0006-3002(62)91015-6. [DOI] [PubMed] [Google Scholar]
  19. VAN GRONINGENH, SLATER E. C. THE EFFECT OF OLIGOMYCIN ON THE (NA+ + K+)-ACTIVATED MAGNESIUM ATPASE OF BRAIN MICROSOMES AND ERYTHROCYTE MEMBRANE. Biochim Biophys Acta. 1963 Jul 9;73:527–530. doi: 10.1016/0006-3002(63)90460-8. [DOI] [PubMed] [Google Scholar]
  20. WHITTAM R., DAVIES R. E. Active transport of water, sodium, potassium and alpha-oxoglutarate by kidney-cortex slices. Biochem J. 1953 Dec;55(5):880–888. doi: 10.1042/bj0550880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]
  22. WILLIS J. S. UPTAKE OF POTASSIUM AT LOW TEMPERATURES IN KIDNEY CORTEX SLICES OF HIBERNATING MAMMALS. Nature. 1964 Nov 14;204:691–693. doi: 10.1038/204691a0. [DOI] [PubMed] [Google Scholar]
  23. Wheeler K. P., Whittam R. Structural and enzymic aspects of the hydrolysis of adenosine triphosphate by membranes of kidney cortex and erythrocytes. Biochem J. 1964 Nov;93(2):349–363. doi: 10.1042/bj0930349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES