Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1953 Apr;54(1):107–116. doi: 10.1042/bj0540107

Oxidative phosphorylation

H A Krebs 1, A Ruffo 1, Monica Johnson 1, L V Eggleston 1, R Hems 1
PMCID: PMC1268853  PMID: 13058839

Full text

PDF
107

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY K. The enzymic degradation of adenosinetriphosphate. Biochem J. 1949;45(4):479–486. doi: 10.1042/bj0450479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARKULIS S. S., LEHNINGER A. L. Myokinase and the adenine nucleotide specificity in oxidative phosphorylations. J Biol Chem. 1951 May;190(1):339–344. [PubMed] [Google Scholar]
  3. BARKULIS S. S., LEHNINGER A. L. The nature of phosphorylations accompanying the oxidation of pyruvate. J Biol Chem. 1951 Dec;193(2):597–604. [PubMed] [Google Scholar]
  4. BURTON K., KREBS H. A. The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosinetriphosphate. Biochem J. 1953 Apr;54(1):94–107. doi: 10.1042/bj0540094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. COPENHAVER J. H., Jr, LARDY H. A. Oxidative phosphorylations; pathways and yield in mitochondrial preparations. J Biol Chem. 1952 Mar;195(1):225–238. [PubMed] [Google Scholar]
  6. EGGLESTON L. V., HEMS R. Separation of adenosine phosphates by paper chromotography and the equilibrium constant of the myokinase system. Biochem J. 1952 Sep;52(1):156–160. doi: 10.1042/bj0520156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GREEN D. C., ATCHLEY W. A. Studies the cyclophorase system; incorporation of P32. Arch Biochem. 1949 Dec;24(2):359–374. [PubMed] [Google Scholar]
  8. HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
  9. JOHNSON R. B., LARDY H. A. Orthophosphate uptake during the oxidation of fatty acids. J Biol Chem. 1950 May;184(1):235–242. [PubMed] [Google Scholar]
  10. JUDAH J. D. The action of 2:4-dinitrophenol on oxidative phosphorylation. Biochem J. 1951 Aug;49(3):271–285. doi: 10.1042/bj0490271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. JUDAH J. D., WILLIAMS-ASHMAN H. G. The inhibition of oxidative phosphorylation. Biochem J. 1951 Jan;48(1):33–42. doi: 10.1042/bj0480033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KREBS H. A. Body size and tissue respiration. Biochim Biophys Acta. 1950 Jan;4(1-3):249–269. doi: 10.1016/0006-3002(50)90032-1. [DOI] [PubMed] [Google Scholar]
  13. KREBS H. A., EGGLESTON L. V., TERNER C. In vitro measurements of the turnover rate of potassium in brain and retina. Biochem J. 1951 May;48(5):530–537. doi: 10.1042/bj0480530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KREBS H. A., JOHNSON M., EGGLESTON L. V., HEMS R. The reactivity of the labile phosphate groups of adenosinetriphosphate. Biochem J. 1951 Aug;49(3):xxxv–xxxvi. [PubMed] [Google Scholar]
  15. KREBS H. A. Manometric determination of L-aspartic acid and L-asparagine. Biochem J. 1950 Nov-Dec;47(5):605–614. doi: 10.1042/bj0470605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kalckar H. The nature of phosphoric esters formed in kidney extracts. Biochem J. 1939 May;33(5):631–641. doi: 10.1042/bj0330631b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
  18. Krebs H. A. The role of fumarate in the respiration of Bacterium coli commune. Biochem J. 1937 Nov;31(11):2095–2124. doi: 10.1042/bj0312095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
  20. LEHNINGER A. L., SMITH S. W. Efficiency of phosphorylation coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen. J Biol Chem. 1949 Nov;181(1):415–429. [PubMed] [Google Scholar]
  21. MARKHAM R., SMITH J. D. Chromatographic studies of nucleic acids; a technique for the identification and estimation of purine and pyrimidine bases, nucleosides and related substances. Biochem J. 1949;45(3):294–298. doi: 10.1042/bj0450294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NOSSAL P. M. Estimation of L-malate and fumarate by malic decarboxylase of Lactobacillus arabinosus. Biochem J. 1952 Jan;50(3):349–355. doi: 10.1042/bj0500349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NOVIKOFF A. B., HECHT L., PODBER E., RYAN J. Phosphatases of rat liver. I. The dephosphorylation of adenosinetriphosphate. J Biol Chem. 1952 Jan;194(1):153–170. [PubMed] [Google Scholar]
  24. PARDEE A. B., POTTER V. R. Factors affecting the maintenance of oxidative phosphorylation in a kidney homogenate system. J Biol Chem. 1949 Dec;181(2):739–753. [PubMed] [Google Scholar]
  25. RECKNAGEL R. O., POTTER V. R. Mechanism of the ketogenic effect of ammonium chloride. J Biol Chem. 1951 Jul;191(1):263–275. [PubMed] [Google Scholar]
  26. SLATER E. C. Phosphorylation coupled with the reduction of cytochrome C by alpha-ketoglutarate in heart muscle granules. Nature. 1950 Dec 9;166(4232):982–984. doi: 10.1038/166982a0. [DOI] [PubMed] [Google Scholar]
  27. WEIL-MALHERBE H., BONE A. D. The microestimation of citric acid. Biochem J. 1949;45(4):377–381. doi: 10.1042/bj0450377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES