Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1954 Oct;58(2):268–278. doi: 10.1042/bj0580268

The formation of urocanic acid and glutamic acid in the fermentation of histidine by Clostridium tetanomorphum

R L Wickremasinghe 1, B A Fry 1
PMCID: PMC1269884  PMID: 13208585

Full text

PDF
268

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOREK B. A., WAELSCH H. The enzymatic degradation of histidine. J Biol Chem. 1953 Nov;205(1):459–474. [PubMed] [Google Scholar]
  2. BROWN F., HALL L. P. Separation of carboxylate ions on the paper chromatogram. Nature. 1950 Jul 8;166(4210):66–67. doi: 10.1038/166066b0. [DOI] [PubMed] [Google Scholar]
  3. BROWN F. Separation of the lower fatty acids as anions by paper chromatography. Biochem J. 1950 Nov-Dec;47(5):598–600. doi: 10.1042/bj0470598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker H. A., Beck J. V. Clostridium acidi-uridi and Clostridium cylindrosporum, Organisms Fermenting Uric Acid and Some Other Purines. J Bacteriol. 1942 Mar;43(3):291–304. doi: 10.1128/jb.43.3.291-304.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CELANDER D. R., BERG C. P. The availability of D-histidine, related imidazoles, and D-tryptophan in the mouse. J Biol Chem. 1953 May;202(1):339–350. [PubMed] [Google Scholar]
  6. Cohen P. P. Microdetermination of glutamic acid. Biochem J. 1939 Apr;33(4):551–558. doi: 10.1042/bj0330551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Consden R., Gordon A. H., Martin A. J. Qualitative analysis of proteins: a partition chromatographic method using paper. Biochem J. 1944;38(3):224–232. doi: 10.1042/bj0380224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conway E. J., O'malley E. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10mug. N). Biochem J. 1942 Sep;36(7-9):655–661. doi: 10.1042/bj0360655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELSDEN S. R., LEWIS D. The production of fatty acids by a gram-negative coccus. Biochem J. 1953 Aug;55(1):183–189. doi: 10.1042/bj0550183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gale E. F. Studies on bacterial amino-acid decarboxylases: 5. The use of specific decarboxylase preparations in the estimation of amino-acids and in protein analysis. Biochem J. 1945;39(1):46–52. doi: 10.1042/bj0390046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HALL D. A. Histidine alpha-deaminase and the production of urocanic acid in the mammal. Biochem J. 1952 Jul;51(4):499–504. doi: 10.1042/bj0510499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HISCOX E. R., BERRIDGE N. J. Use of paper partition chromatography in the identification of the volatile fatty acids. Nature. 1950 Sep 23;166(4221):522–522. doi: 10.1038/166522a0. [DOI] [PubMed] [Google Scholar]
  13. HUGHES D. E., WILLIAMSON D. H. Removal of acid by trioctylamine from samples for microbiological assay. Biochem J. 1951 Apr;48(4):487–490. doi: 10.1042/bj0480487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrison K. Metabolites of contracting muscle. Utilization of fumarate. Biochem J. 1939 Sep;33(9):1465–1469. doi: 10.1042/bj0331465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MEHLER A. H., TABOR H. Deamination of histidine to form urocanic acid in liver. J Biol Chem. 1953 Apr;201(2):775–784. [PubMed] [Google Scholar]
  17. Macpherson H. T. The basic amino-acid content of proteins. Biochem J. 1946;40(4):470–481. [PMC free article] [PubMed] [Google Scholar]
  18. Markham R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 1942 Dec;36(10-12):790–791. doi: 10.1042/bj0360790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pope C. G., Stevens M. F. The determination of amino-nitrogen using a copper method. Biochem J. 1939 Jul;33(7):1070–1077. doi: 10.1042/bj0331070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Raistrick H. Studies on the Cycloclastic Power of Bacteria: Part I. A Quantitative Study of the Aerobic Decomposition of Histidine by Bacteria. Report to the Medical Research Committee. Biochem J. 1919 Dec;13(4):446–458. doi: 10.1042/bj0130446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SILVERMAN M., GARDINER R. C., BAKERMAN H. A. The nature of the glutamic acid excreted in folic acid deficiency. J Biol Chem. 1952 Feb;194(2):815–821. [PubMed] [Google Scholar]
  22. TABOR H., HAYAISHI O. The enzymatic conversion of histidine to glutamic acid. J Biol Chem. 1952 Jan;194(1):171–175. [PubMed] [Google Scholar]
  23. TABOR H., MEHLER A. H., HAYAISHI O., WHITE J. Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids. J Biol Chem. 1952 May;196(1):121–128. [PubMed] [Google Scholar]
  24. Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochem J. 1937 Oct;31(10):1774–1788. doi: 10.1042/bj0311774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): The decomposition of pyruvate and l-(+)glutamate by Clostridium tetanomorphum. Biochem J. 1938 Feb;32(2):345–356. doi: 10.1042/bj0320345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Woods D. D. Hydrogenlyases: The synthesis of formic acid by bacteria. Biochem J. 1936 Mar;30(3):515–527. doi: 10.1042/bj0300515. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES