Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOREK B. A., WAELSCH H. The enzymatic degradation of histidine. J Biol Chem. 1953 Nov;205(1):459–474. [PubMed] [Google Scholar]
- BROWN F., HALL L. P. Separation of carboxylate ions on the paper chromatogram. Nature. 1950 Jul 8;166(4210):66–67. doi: 10.1038/166066b0. [DOI] [PubMed] [Google Scholar]
- BROWN F. Separation of the lower fatty acids as anions by paper chromatography. Biochem J. 1950 Nov-Dec;47(5):598–600. doi: 10.1042/bj0470598. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker H. A., Beck J. V. Clostridium acidi-uridi and Clostridium cylindrosporum, Organisms Fermenting Uric Acid and Some Other Purines. J Bacteriol. 1942 Mar;43(3):291–304. doi: 10.1128/jb.43.3.291-304.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CELANDER D. R., BERG C. P. The availability of D-histidine, related imidazoles, and D-tryptophan in the mouse. J Biol Chem. 1953 May;202(1):339–350. [PubMed] [Google Scholar]
- Cohen P. P. Microdetermination of glutamic acid. Biochem J. 1939 Apr;33(4):551–558. doi: 10.1042/bj0330551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Consden R., Gordon A. H., Martin A. J. Qualitative analysis of proteins: a partition chromatographic method using paper. Biochem J. 1944;38(3):224–232. doi: 10.1042/bj0380224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Conway E. J., O'malley E. Microdiffusion methods. Ammonia and urea using buffered absorbents (revised methods for ranges greater than 10mug. N). Biochem J. 1942 Sep;36(7-9):655–661. doi: 10.1042/bj0360655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELSDEN S. R., LEWIS D. The production of fatty acids by a gram-negative coccus. Biochem J. 1953 Aug;55(1):183–189. doi: 10.1042/bj0550183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F. Studies on bacterial amino-acid decarboxylases: 5. The use of specific decarboxylase preparations in the estimation of amino-acids and in protein analysis. Biochem J. 1945;39(1):46–52. doi: 10.1042/bj0390046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HALL D. A. Histidine alpha-deaminase and the production of urocanic acid in the mammal. Biochem J. 1952 Jul;51(4):499–504. doi: 10.1042/bj0510499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HISCOX E. R., BERRIDGE N. J. Use of paper partition chromatography in the identification of the volatile fatty acids. Nature. 1950 Sep 23;166(4221):522–522. doi: 10.1038/166522a0. [DOI] [PubMed] [Google Scholar]
- HUGHES D. E., WILLIAMSON D. H. Removal of acid by trioctylamine from samples for microbiological assay. Biochem J. 1951 Apr;48(4):487–490. doi: 10.1042/bj0480487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison K. Metabolites of contracting muscle. Utilization of fumarate. Biochem J. 1939 Sep;33(9):1465–1469. doi: 10.1042/bj0331465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MEHLER A. H., TABOR H. Deamination of histidine to form urocanic acid in liver. J Biol Chem. 1953 Apr;201(2):775–784. [PubMed] [Google Scholar]
- Macpherson H. T. The basic amino-acid content of proteins. Biochem J. 1946;40(4):470–481. [PMC free article] [PubMed] [Google Scholar]
- Markham R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 1942 Dec;36(10-12):790–791. doi: 10.1042/bj0360790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pope C. G., Stevens M. F. The determination of amino-nitrogen using a copper method. Biochem J. 1939 Jul;33(7):1070–1077. doi: 10.1042/bj0331070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raistrick H. Studies on the Cycloclastic Power of Bacteria: Part I. A Quantitative Study of the Aerobic Decomposition of Histidine by Bacteria. Report to the Medical Research Committee. Biochem J. 1919 Dec;13(4):446–458. doi: 10.1042/bj0130446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SILVERMAN M., GARDINER R. C., BAKERMAN H. A. The nature of the glutamic acid excreted in folic acid deficiency. J Biol Chem. 1952 Feb;194(2):815–821. [PubMed] [Google Scholar]
- TABOR H., HAYAISHI O. The enzymatic conversion of histidine to glutamic acid. J Biol Chem. 1952 Jan;194(1):171–175. [PubMed] [Google Scholar]
- TABOR H., MEHLER A. H., HAYAISHI O., WHITE J. Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids. J Biol Chem. 1952 May;196(1):121–128. [PubMed] [Google Scholar]
- Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochem J. 1937 Oct;31(10):1774–1788. doi: 10.1042/bj0311774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. D., Clifton C. E. Studies in the metabolism of the strict anaerobes (genus Clostridium): The decomposition of pyruvate and l-(+)glutamate by Clostridium tetanomorphum. Biochem J. 1938 Feb;32(2):345–356. doi: 10.1042/bj0320345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods D. D. Hydrogenlyases: The synthesis of formic acid by bacteria. Biochem J. 1936 Mar;30(3):515–527. doi: 10.1042/bj0300515. [DOI] [PMC free article] [PubMed] [Google Scholar]