Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1966 Oct;101(1):135–145. doi: 10.1042/bj1010135

The effects of potassium ions and denervation on protein synthesis and the transport of amino acids in muscle

E J Harris 1, K L Manchester 1
PMCID: PMC1270074  PMID: 4382008

Abstract

1. The effects of varying concentrations of K+ during incubation, of denervation and of various drugs on the accumulation of 14C-labelled amino acids, their incorporation into protein and the stimulation of these processes by insulin in rat diaphragm preparations were studied. 2. The accumulation of glycine and aminoisobutyrate and incorporation of glycine into protein was less in tissue incubated in K+-free buffer or 20mm-K+ than with 5–10mm-K+. Incorporation of leucine was unaffected. 3. Incorporation into protein of amino acids by diaphragm that had been denervated 3 days previously was elevated. Accumulation of both glycine and aminoisobutyrate was also raised but that of phenylalanine was unaffected. 4. Accumulation of glycine by diaphragm and extensor digitorum longus muscle was decreased by a number of agents including cocaine and mepyramine. 5. The stimulation of incorporation by insulin was unaffected by changes in K+ or in the presence of cocaine and mepyramine. Denervated tissue was markedly less responsive to insulin than its control. 6. The results are discussed in the context of the relation of amino acid accumulation to operation of the Na+ pump and the influence of insulin thereon.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUSE M. G., BUSE J. Glucose uptake and response to insulin of the isolated rat diaphragm: the effect of denervation. Diabetes. 1959 May-Jun;8(3):218–225. doi: 10.2337/diab.8.3.218. [DOI] [PubMed] [Google Scholar]
  2. BUSE M. G., BUSE J. The effect of denervation and insulin on the penetration of D-xylose into rat hemidiaphragms. Diabetes. 1961 Mar-Apr;10:134–141. doi: 10.2337/diab.10.2.134. [DOI] [PubMed] [Google Scholar]
  3. Buse M. G., McMaster J., Buse J. The effect of denervation and insulin on protein synthesis in the isolated rat diaphragm. Metabolism. 1965 Nov;14(11):1220–1232. doi: 10.1016/0026-0495(65)90092-2. [DOI] [PubMed] [Google Scholar]
  4. CREESE R., D'SILVA J. L., NORTHOVER J. Effect of insulin on sodium in muscle. Nature. 1958 May 3;181(4618):1278–1278. doi: 10.1038/1811278a0. [DOI] [PubMed] [Google Scholar]
  5. CREESE R. Measurement of cation fluxes in rat diaphragm. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):497–513. doi: 10.1098/rspb.1954.0039. [DOI] [PubMed] [Google Scholar]
  6. CSAKY T. Z. Significance of sodium ions in active intestinal transport of nonelectrolytes. Am J Physiol. 1961 Dec;201:999–1001. doi: 10.1152/ajplegacy.1961.201.6.999. [DOI] [PubMed] [Google Scholar]
  7. DEALMEIDA D. F., CHAIN E. B., POCCHIARI F. EFFECT OF AMMONIUM AND OTHER IONS ON THE GLUCOSE-DEPENDENT ACTIVE TRANSPORT OF L-HISTIDINE IN SLICES OF RAT-BRAIN CORTEX. Biochem J. 1965 Jun;95:793–796. doi: 10.1042/bj0950793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dydynska M., Harris E. J. Consumption of high-energy phosphates during active sodium and potassium interchange in frog muscle. J Physiol. 1966 Jan;182(1):92–109. doi: 10.1113/jphysiol.1966.sp007811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FISHER K. C., GOURLEY D. R., MANERY J. F. The potassium uptake and rate of oxygen consumption of isolated frog skeletal muscle in the presence of insulin and lactate. Can J Biochem Physiol. 1956 Sep;34(5):893–902. [PubMed] [Google Scholar]
  10. FOX M., THIER S., ROSENBERG L., SEGAL S. IONIC REQUIREMENTS FOR AMINO ACID TRANSPORT IN THE RAT KIDNEY CORTEX SLICE. I. INFLUENCE OF EXTRACELLULAR IONS. Biochim Biophys Acta. 1964 Jan 27;79:167–176. doi: 10.1016/0926-6577(64)90049-x. [DOI] [PubMed] [Google Scholar]
  11. HARRIS E. J., NICHOLLS J. G. The effect of denervation on the rate of entry of potassium into frog muscle. J Physiol. 1956 Feb 28;131(2):473–476. doi: 10.1113/jphysiol.1956.sp005476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HILL A. V., HOWARTH J. V. The effect of potassium on the resting metabolism of the frog's sartorius. Proc R Soc Lond B Biol Sci. 1957 Aug 24;147(926):21–43. doi: 10.1098/rspb.1957.0034. [DOI] [PubMed] [Google Scholar]
  13. HUBBARD S. J. The electrical constants and the component conductances of frog skeletal muscle after denervation. J Physiol. 1963 Mar;165:443–456. doi: 10.1113/jphysiol.1963.sp007069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. JOHNSTONE R. M., SCHOLEFIELD P. G. THE NEED FOR IONS DURING TRANSPORT AND EXCHANGE DIFFUSION OF AMINO ACIDS INTO EHRLICH ASCITES CARCINOMA CELLS. Biochim Biophys Acta. 1965 Jan 25;94:130–135. doi: 10.1016/0926-6585(65)90016-6. [DOI] [PubMed] [Google Scholar]
  15. KIPNIS D. M., CORI C. F. Studies of tissue permeability. III. The effect of insulin on pentose uptake by the diaphragm. J Biol Chem. 1957 Feb;224(2):681–693. [PubMed] [Google Scholar]
  16. KIPNIS D. M., NOALL M. W. Stimulation of amino acid transport by insulin in the isolated rat diaphragm. Biochim Biophys Acta. 1958 Apr;28(1):226–227. doi: 10.1016/0006-3002(58)90466-9. [DOI] [PubMed] [Google Scholar]
  17. KIPNIS D. M., REISS E., HELMREICH E. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochim Biophys Acta. 1961 Aug 19;51:519–524. doi: 10.1016/0006-3002(61)90608-4. [DOI] [PubMed] [Google Scholar]
  18. KOSTYO J. L. SEPARATION OF THE EFFECTS OF GROWTH HORMONE ON MUSCLE AMINO ACID TRANSPORT AND PROTEIN SYNTHESIS. Endocrinology. 1964 Jul;75:113–119. doi: 10.1210/endo-75-1-113. [DOI] [PubMed] [Google Scholar]
  19. Kuchler R. J., Marlowe-Kuchler M. The transport and accumulation of alpha-aminoisobutyric acid into l-strain mouse fibroblasts. Biochim Biophys Acta. 1965 May 25;102(1):226–234. doi: 10.1016/0926-6585(65)90215-3. [DOI] [PubMed] [Google Scholar]
  20. LAHIRI S., LAJTHA A. CEREBRAL AMINO ACID TRANSPORT IN VITRO. I. SOME REQUIREMENTS AND PROPERTIES OF UPTAKE. J Neurochem. 1964 Feb;11:77–86. doi: 10.1111/j.1471-4159.1964.tb06744.x. [DOI] [PubMed] [Google Scholar]
  21. MANCHESTER K. L. Insulin and incorporation of amino acids into protein of muscle. Cellular amino acid levels and aminoisobutyric acid uptake. Biochem J. 1961 Oct;81:135–147. doi: 10.1042/bj0810135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MANCHESTER K. L., WOOL I. G. INSULIN AND INCORPORATION OF AMINO ACIDS INTO PROTEIN OF MUSCLE. 1. ACCUMULATION AND INCORPORATION STUDIES WITH THE PERFUSED RAT HEART. Biochem J. 1963 Nov;89:202–209. doi: 10.1042/bj0890202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. MANCHESTER K. L., YOUNG F. G. The effect of insulin in vitro on the accumulation of amino acids by isolated rat diaphragm. Biochem J. 1960 Jun;75:487–495. doi: 10.1042/bj0750487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. MANCHESTER K. L., YOUNG F. G. The effect of insulin on incorporation of amino acids into protein of normal rat diaphragm in vitro. Biochem J. 1958 Nov;70(3):353–358. doi: 10.1042/bj0700353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MARTIN A. W., STEWART D. M. Hypertrophy of the denervated hemidiaphragm. Am J Physiol. 1956 Sep;186(3):497–500. doi: 10.1152/ajplegacy.1956.186.3.497. [DOI] [PubMed] [Google Scholar]
  26. Manchester K. L. Some factors affecting the response of muscle to insulin. Biochem J. 1966 Mar;98(3):711–719. doi: 10.1042/bj0980711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. NICHOLLS J. G. The electrical properties of denervated skeletal muscle. J Physiol. 1956 Jan 27;131(1):1–12. doi: 10.1113/jphysiol.1956.sp005440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  29. Otsuka M., Ohtsuki I. Mechanism of muscular paralysis by insulin with particular reference to familial periodic paralysis. Nature. 1965 Jul 17;207(994):300–301. doi: 10.1038/207300a0. [DOI] [PubMed] [Google Scholar]
  30. PARK C. R., JOHNSON L. H. Effect of insulin on transport of glucose and galactose into cells of rat muscle and brain. Am J Physiol. 1955 Jul;182(1):17–23. doi: 10.1152/ajplegacy.1955.182.1.17. [DOI] [PubMed] [Google Scholar]
  31. POGELL B. M. The quantitative determination of fructose with skatole and hydrochloric acid. J Biol Chem. 1954 Nov;211(1):143–147. [PubMed] [Google Scholar]
  32. RIGGS T. R., WALKER L. M., CHRISTENSEN H. N. Potassium migration and amino acid transport. J Biol Chem. 1958 Dec;233(6):1479–1484. [PubMed] [Google Scholar]
  33. SHANES A. M. Drug and ion effects in frog muscle. J Gen Physiol. 1950 Jul 20;33(6):729–744. doi: 10.1085/jgp.33.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. SOLA O. M., MARTIN A. W. Denervation hypertrophy and atrophy of the hemidiaphragm of the rat. Am J Physiol. 1953 Feb;172(2):324–332. doi: 10.1152/ajplegacy.1953.172.2.324. [DOI] [PubMed] [Google Scholar]
  35. STEWART D. M. Changes in the protein composition of muscles of the rat in hypertrophy and atrophy. Biochem J. 1955 Apr;59(4):553–558. doi: 10.1042/bj0590553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. VIDAVER G. A. SOME TESTS OF THE HYPOTHESIS THAT THE SODIUM-ION GRADIENT FURNISHES THE ENERGY FOR GLYCINE-ACTIVE TRANSPORT BY PIGEON RED CELLS. Biochemistry. 1964 Jun;3:803–808. doi: 10.1021/bi00894a013. [DOI] [PubMed] [Google Scholar]
  37. WOOL I. G. EFFECT OF INSULIN ON ACCUMULATION OF RADIOACTIVITY FROM AMINO-ACIDS BY ISOLATED INTACT RAT DIAPHRAGM. Nature. 1964 Apr 11;202:196–197. doi: 10.1038/202196a0. [DOI] [PubMed] [Google Scholar]
  38. WOOL I. G., KRAHL M. E. Incorporation of C14-amino acids into protein of isolated diaphragms: an effect of insulin independent of glucose entry. Am J Physiol. 1959 May;196(5):961–964. doi: 10.1152/ajplegacy.1959.196.5.961. [DOI] [PubMed] [Google Scholar]
  39. ZIERLER K. L. Effect of insulin on membrane potential and potassium content of rat muscle. Am J Physiol. 1959 Sep;197:515–523. doi: 10.1152/ajplegacy.1959.197.3.515. [DOI] [PubMed] [Google Scholar]
  40. ZIERLER K. L. Hyperpolarization of muscle by insulin in a glucose-free environment. Am J Physiol. 1959 Sep;197:524–526. doi: 10.1152/ajplegacy.1959.197.3.524. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES