Abstract
1. A system for the incorporation in vitro of amino acids into protein is described for the South African clawed toad (Xenopus laevis laevis Daudin). 2. The incorporation of l-[U-14C]leucine by Xenopus-liver microsomes is very much greater per mg. of microsomal RNA than the incorporation by ovary microsomes. 3. The incorporation by Xenopus-liver and -ovary polysomes is approximately the same when expressed per mg. of polysomal RNA. 4. It was predicted from the above results that ovary microsomes should contain a ribosomal fraction inactive in protein synthesis. This was shown to be the case by a labelling experiment in vivo with l-[U-14C]leucine. 5. The labelling experiment in vivo also showed that the active polysomal fraction in ovary is associated with membranes and is liberated by treatment with deoxycholate; this is also true of liver microsomes in vivo. 6. The results are discussed in relation to previous work on the synthesis of proteins by amphibian ovarian tissue, and on the role of bound and free ribosomes in protein synthesis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN D. D., LITTNA E. RNA SYNTHESIS DURING THE DEVELOPMENT OF XENOPUS LAEVIS, THE SOUTH AFRICAN CLAWED TOAD. J Mol Biol. 1964 May;8:669–687. doi: 10.1016/s0022-2836(64)80116-9. [DOI] [PubMed] [Google Scholar]
- Campbell P. N., Cooper C., Hicks M. Studies on the role of the morphological constituents of the microsome fraction from rat liver in protein synthesis. Biochem J. 1964 Aug;92(2):225–234. doi: 10.1042/bj0920225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell P. N., Serck-Hanssen G., Lowe E. Studies on the protein-synthesizing activity of the ribosomes of rat liver. The activity of free polysomes. Biochem J. 1965 Nov;97(2):422–431. doi: 10.1042/bj0970422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EARL D. C., KORNER A. THE ISOLATION AND PROPERTIES OF CARDIAC RIBOSOMES AND POLYSOMES. Biochem J. 1965 Mar;94:721–734. doi: 10.1042/bj0940721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GANOZA M. C., WILLIAMS C. A., LIPMANN F. SYNTHESIS OF SERUM PROTEINS BY A CELL-FREE SYSTEM FROM RAT LIVER. Proc Natl Acad Sci U S A. 1965 Mar;53:619–622. doi: 10.1073/pnas.53.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GANOZA M. C., WILLIAMS C. A., LIPMANN F. SYNTHESIS OF SERUM PROTEINS BY A CELL-FREE SYSTEM FROM RAT LIVER. Proc Natl Acad Sci U S A. 1965 Mar;53:619–622. doi: 10.1073/pnas.53.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIERER A. Function of aggregated reticulocyte ribosomes in protein synthesis. J Mol Biol. 1963 Feb;6:148–157. doi: 10.1016/s0022-2836(63)80131-x. [DOI] [PubMed] [Google Scholar]
- GROSS P. R. THE IMMEDIACY OF GENOMIC CONTROL DURING EARLY DEVELOPMENT. J Exp Zool. 1964 Oct;157:21–41. doi: 10.1002/jez.1401570107. [DOI] [PubMed] [Google Scholar]
- HENSHAW E. C., BOJARSKI T. B., HIATT H. H. PROTEIN SYNTHESIS BY FREE AND BOUND RAT LIVER RIBOSOMES IN VIVO AND IN VITRO. J Mol Biol. 1963 Aug;7:122–129. doi: 10.1016/s0022-2836(63)80041-8. [DOI] [PubMed] [Google Scholar]
- HOAGLAND M. B., STEPHENSON M. L., SCOTT J. F., HECHT L. I., ZAMECNIK P. C. A soluble ribonucleic acid intermediate in protein synthesis. J Biol Chem. 1958 Mar;231(1):241–257. [PubMed] [Google Scholar]
- HULTIN T. Activation of ribosomes in sea urchin eggs in response to fertilization. Exp Cell Res. 1961 Nov;25:405–417. doi: 10.1016/0014-4827(61)90290-7. [DOI] [PubMed] [Google Scholar]
- HULTIN T. ON THE MECHANISM OF RIBOSOMAL ACTIVATION IN NEWLY FERTILIZED SEA URCHIN EGGS. Dev Biol. 1964 Oct;10:305–328. doi: 10.1016/0012-1606(64)90047-8. [DOI] [PubMed] [Google Scholar]
- Hall T. C., Cocking E. C. High-efficiency liquid-scintillation counting of 14C-labelled material in aqueous solution and determination of specific activity of labelled proteins. Biochem J. 1965 Sep;96(3):626–633. doi: 10.1042/bj0960626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEMP N. E. Electron microscopy of growing oocytes of Rana pipiens. J Biophys Biochem Cytol. 1956 May 25;2(3):281–292. doi: 10.1083/jcb.2.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEMP N. E. Incorporation of radioactive glycine into proteins of frog oocytes. Science. 1955 Apr 1;121(3144):471–472. doi: 10.1126/science.121.3144.471. [DOI] [PubMed] [Google Scholar]
- KOHNE D. THE ISOLATION OF RIBOSOMES FROM EGGS AND EMBRYOS OF RANA PIPIENS. Exp Cell Res. 1965 Apr;38:211–213. doi: 10.1016/0014-4827(65)90444-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marks P. A., Burka E. R., Schlessinger D. PROTEIN SYNTHESIS IN ERYTHROID CELLS, I. RETICULOCYTE RIBOSOMES ACTIVE IN STIMULATING AMINO ACID INCORPORATION. Proc Natl Acad Sci U S A. 1962 Dec;48(12):2163–2171. doi: 10.1073/pnas.48.12.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro A. J., Jackson R. J., Korner A. Studies on the nature of polysomes. Biochem J. 1964 Aug;92(2):289–299. doi: 10.1042/bj0920289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Pancreatic microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Nov 25;2(6):671–690. doi: 10.1083/jcb.2.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PORTER K. R. Electron microscopy of basophilic components of cytoplasm. J Histochem Cytochem. 1954 Sep;2(5):346–375. doi: 10.1177/2.5.346. [DOI] [PubMed] [Google Scholar]
- PRESCOTT D. M. Nuclear function and nuclear-cytoplasmic interactions. Annu Rev Physiol. 1960;22:17–44. doi: 10.1146/annurev.ph.22.030160.000313. [DOI] [PubMed] [Google Scholar]
- SIEKEVITZ P., PALADE G. E. A cytochemical study on the pancreas of the guinea pig. 5. In vivo incorporation of leucine-1-C14 into the chymotrypsinogen of various cell fractions. J Biophys Biochem Cytol. 1960 Jul;7:619–630. doi: 10.1083/jcb.7.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SLAUTTERBACK D. B., FAWCETT D. W. The development of the cnidoblasts of Hydra; an electron microscope study of cell differentiation. J Biophys Biochem Cytol. 1959 May 25;5(3):441–452. doi: 10.1083/jcb.5.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARNER J. R., KNOPF P. M., RICH A. A multiple ribosomal structure in protein synthesis. Proc Natl Acad Sci U S A. 1963 Jan 15;49:122–129. doi: 10.1073/pnas.49.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]
- Warner J. R., Rich A., Hall C. E. Electron Microscope Studies of Ribosomal Clusters Synthesizing Hemoglobin. Science. 1962 Dec 28;138(3548):1399–1403. doi: 10.1126/science.138.3548.1399. [DOI] [PubMed] [Google Scholar]