Abstract
1. Whole blood was incubated at 37°, while being dialysed against a large volume of iso-osmotic bicarbonate buffer, pH7·4. The buffer contained glucose and the essential inorganic components of blood plasma in proportion. 2. After 3hr. of incubation in vitro there is a loss of red-cell 2,3-diphosphoglycerate. 3. Isotope experiments show that this is due to an accelerated rate of destruction of this compound. 4. Simultaneously, there is an increase in the median of red-cell osmotic fragility. 5. After extended periods of incubation there is a decrease in the metabolic rate and a decrease in the ratio of the rates of lactate production to glucose consumption. 6. There is a continuous loss of total adenine nucleotide and, after the first 12hr. of incubation, a tendency for the intracellular Na+ and K+ to equilibrate with the plasma. 7. The standard deviation of red-cell osmotic fragility expressed among the red-cell population increases exponentially with the time of incubation.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALVING A. S., CARSON P. E., FLANAGAN C. L., ICKES C. E. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science. 1956 Sep 14;124(3220):484–485. doi: 10.1126/science.124.3220.484-a. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Human red cell glycolytic intermediates. J Biol Chem. 1959 Mar;234(3):449–458. [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Conway E. J., Cooke R. The deaminases of adenosine and adenylic acid in blood and tissues. Biochem J. 1939 Apr;33(4):479–492. doi: 10.1042/bj0330479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EMERSON C. P., Jr, SHEIN S. C., HAM T. H., FLEMING E. M., CASTLE W. B. Studies on the destruction of red blood cells. IX. Quantitative methods for determining the osmotic and mechanical fragility of red cells in the peripheral blood and splenic pulp; the mechanism of increased hemolysis in hereditary spherocytosis (congenital hemolytic jaundice) as related to the functions of the spleen. AMA Arch Intern Med. 1956 Jan;97(1):1–38. doi: 10.1001/archinte.1956.00250190017001. [DOI] [PubMed] [Google Scholar]
- HARRIS E. J., PRANKERD T. A. The rate of sodium extrusion from human erythrocytes. J Physiol. 1953 Sep;121(3):470–486. doi: 10.1113/jphysiol.1953.sp004959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter F. T. A PHOTOELECTRIC METHOD FOR THE QUANTITATIVE DETERMINATION OF ERYTHROCYTE FRAGILITY. J Clin Invest. 1940 Sep;19(5):691–694. doi: 10.1172/JCI101172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOHR G. W., WALLER H. D., KARGES O., SCHLEGEL B., MULLER A. A. Zur Biochemie der Alterung menschlicher Erythrocyten. Klin Wochenschr. 1958 Nov 1;36(21):1008–1013. doi: 10.1007/BF01487970. [DOI] [PubMed] [Google Scholar]
- MINAKAMI S., KAKINUMA K., YOSHIKAWA H. THE CONTROL OF ERYTHROCYTE GLYCOLYSIS BY ACTIVE CATION TRANSPORT. Biochim Biophys Acta. 1964 Aug 19;90:434–436. doi: 10.1016/0304-4165(64)90219-3. [DOI] [PubMed] [Google Scholar]
- MORELL S. A., AYERS V. E., GREENWALT T. J. Linear gradient elution of nucleotides from Dowex-1-formate: application to the erythrocyte. Anal Biochem. 1962 Apr;3:285–297. doi: 10.1016/0003-2697(62)90112-4. [DOI] [PubMed] [Google Scholar]
- MOTULSKY A. G., CASSERD F., GIBLETT E. R., BROUN G. O., Jr, FINCH C. A. Anemia and the spleen. N Engl J Med. 1958 Dec 11;259(24):1164–contd. doi: 10.1056/NEJM195812112592405. [DOI] [PubMed] [Google Scholar]
- MOTULSKY A. G., CASSERD F., GIBLETT E. R., BROUN G. O., Jr, FINCH C. A. Anemia and the spleen. N Engl J Med. 1958 Dec 18;259(25):1215–concl. doi: 10.1056/NEJM195812182592506. [DOI] [PubMed] [Google Scholar]
- POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
- PRANKERD T. A., ALTMAN K. I. A study of the metabolism of phosphorus in mammalian red cells. Biochem J. 1954 Dec;58(4):622–633. doi: 10.1042/bj0580622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAPOPORT S., LUEBERING J. Glycerate-2,3-diphosphatase. J Biol Chem. 1951 Apr;189(2):683–694. [PubMed] [Google Scholar]
- SCHNEIDER A. S., VALENTINE W. N., HATTORI M., HEINS H. L., Jr HEREDITARY HEMOLYTIC ANEMIA WITH TRIOSEPHOSPHATE ISOMERASE DEFICIENCY. N Engl J Med. 1965 Feb 4;272:229–235. doi: 10.1056/NEJM196502042720503. [DOI] [PubMed] [Google Scholar]
- TANAKA K. R., VALENTINE W. N., MIWA S. Pyruvate kinase (PK) deficiency hereditary nonspherocytic hemolytic anemia. Blood. 1962 Mar;19:267–295. [PubMed] [Google Scholar]
- VELLA F. Observations on spontaneous hemolysis in shed blood. Experientia. 1959 Nov 15;15:433–434. doi: 10.1007/BF02157699. [DOI] [PubMed] [Google Scholar]
- WHITTAM R. Potassium movements and ATP in human red cells. J Physiol. 1958 Mar 11;140(3):479–497. [PMC free article] [PubMed] [Google Scholar]

