Abstract
1. [1-3H]Cholecalciferol was administered orally at two dosages to vitamin D-deficient and -supplemented rats, and the intracellular distribution of the vitamin in the intestinal mucosa studied. 2. The concentration of cholecalciferol was highest in a fraction consisting of brush borders and nuclei. The microsomal fraction contained a higher concentration of the vitamin than the mitochondrial fraction in deficient rats, irrespective of the dose, whereas in the vitamin D-supplemented rats the concentration was the same in the two fractions. 3. Appreciable metabolism of the cholecalciferol occurred only in the supplemented rats and the metabolites were found predominantly in the mitochondrial fraction. 4. The cholecalciferol is more tightly bound to the microsomal fraction than to the mitochondrial fraction. 5. Experiments conducted in vitro have shown that all the intracellular particles combine with the vitamin either when dissolved in ethanol or bound to albumin. However, such an uptake does not account for the high concentration of radioactivity found in vivo in the fraction containing nuclei and brush border, nor for the tightly bound vitamin in the microsomal fraction.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Callow R. K., Kodicek E., Thompson G. A. Metabolism of tritiated vitamin D. Proc R Soc Lond B Biol Sci. 1966 Feb 15;164(994):1–20. doi: 10.1098/rspb.1966.0010. [DOI] [PubMed] [Google Scholar]
- Clark B., Porteous J. W. The isolation and properties of epithelial-cell "ghosts" from rat small intestine. Biochem J. 1965 Aug;96(2):539–551. doi: 10.1042/bj0960539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE LUCA H. F., GUROFF G., STEENBOCK H., REISER S., MANNATT M. R. Effect of various vitamin deficiencies on citric acid metabolism in the rat. J Nutr. 1961 Oct;75:175–180. doi: 10.1093/jn/75.2.175. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Murray T. K., Day K. C., Kodicek E. The differentiation and assay of vitamins D2 and D3 by gas-liquid chromatography. Biochem J. 1966 Jan;98(1):293–296. doi: 10.1042/bj0980293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NORMAN A. W., DELUCA H. F. THE SUBCELLULAR LOCATION OF H3 VITAMIN D3 IN KIDNEY AND INTESTINE. Arch Biochem Biophys. 1964 Jul;107:69–77. doi: 10.1016/0003-9861(64)90270-x. [DOI] [PubMed] [Google Scholar]
- NUMEROF P., SASSAMAN H. L., RODGERS A., SCHAEFER A. E. The use of radioactive phosphorus in the assay of vitamin D. J Nutr. 1955 Jan;55(1):13–21. doi: 10.1093/jn/55.1.13. [DOI] [PubMed] [Google Scholar]
- PORTEOUS J. W., CLARK B. THE ISOLATION AND CHARACTERIZATION OF SUBCELLULAR COMPONENTS OF THE EPITHELIAL CELLS OF RABBIT SMALL INTESTINE. Biochem J. 1965 Jul;96:159–171. doi: 10.1042/bj0960159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RESHEF L., SHAPIRO B. FATTY ACID ADSORPTION BY LIVER- AND ADIPOSE-TISSUE PARTICLES. Biochim Biophys Acta. 1965 Feb 1;98:73–80. doi: 10.1016/0005-2760(65)90012-3. [DOI] [PubMed] [Google Scholar]
- SCHACHTER D., KOWARSKI S., FINKELSTEIN J. D. VITAMIN D3: DIRECT ACTION ON THE SMALL INTESTINE OF THE RAT. Science. 1964 Jan 10;143(3602):143–144. doi: 10.1126/science.143.3602.143. [DOI] [PubMed] [Google Scholar]
- St Angelo A. J., Conkerton E. J., Dechary J. M., Altschul A. M. Modification of edestin with N-carboxy-D,L-alanine anhydride. Biochim Biophys Acta. 1966 May 26;121(1):181–183. doi: 10.1016/0304-4165(66)90368-0. [DOI] [PubMed] [Google Scholar]