Abstract
1. Choline acetyltransferase may be isolated in either a bound or soluble form after hypo-osmotic treatment of a crude synaptosome fraction, depending on the conditions. 2. In the bound form, the enzyme appears to be associated with the larger membrane fragments rather than with synaptic vesicles. 3. The bound form is predominant at slightly acid pH values and low ionic strength, the soluble form under more physiological conditions of pH and ionic strength. 4. Sodium chloride, potassium chloride, magnesium chloride and calcium chloride at similar ionic strengths solubilize the enzyme. 5. Choline acetyltransferase was found to be soluble under these conditions after release from synaptosomes from rat and pigeon cerebra, guinea-pig cortex and rabbit cortex, caudate nuclei, diencephalon and midbrain. 6. Certain isoenzymes of lactate dehydrogenase behaved similarly.
Full text
PDF![262](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/5830ef10daa9/biochemj00744-0278.png)
![263](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/c287ada3c337/biochemj00744-0279.png)
![264](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/e03ef38021ac/biochemj00744-0280.png)
![265](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/e5705467f75c/biochemj00744-0281.png)
![266](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/a3eea9a485ba/biochemj00744-0282.png)
![267](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/45f786550148/biochemj00744-0283.png)
![268](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/7ad25ec275cd/biochemj00744-0284.png)
![269](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/ceabe8d78b4a/biochemj00744-0285.png)
![270](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bb6/1270396/69b37a6f211c/biochemj00744-0286.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERS R. W., RODRIGUEZDE LORES, DEROBERTIS E. SODIUM-POTASSIUM-ACTIVATED ATPASE AND POTASSIUM-ACTIVATED P-NITROPHENYLPHOSPHATASE: A COMPARISON OF THEIR SUBCELLULAR LOCALIZATIONS IN RAT BRAIN. Proc Natl Acad Sci U S A. 1965 Mar;53:557–564. doi: 10.1073/pnas.53.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALDRIDGE W. N., JOHNSON M. K. Cholinesterase, succinic dehydrogenase, nucleic acids, esterase and glutathione reductase in sub-cellular fractions from rat brain. Biochem J. 1959 Oct;73:270–276. doi: 10.1042/bj0730270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BULL G., FEINSTEIN A., MORRIS D. SEDIMENTATION BEHAVIOR AND MOLECULAR WEIGHT OF CHOLINE ACETYLTRANSFERASE. Nature. 1964 Mar 28;201:1326–1326. doi: 10.1038/2011326a0. [DOI] [PubMed] [Google Scholar]
- COLEMAN J. R., HERRMANN H., BESS B. BIOSYNTHESIS OF COLLAGEN AND NON-COLLAGEN PROTEIN DURING DEVELOPMENT OF THE CHICK CORNEA. J Cell Biol. 1965 Apr;25:69–78. doi: 10.1083/jcb.25.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE ROBERTIS E., PELLEGRINO DE IRALDI A., RODRIGUEZ DE LORES GARNAIZ G., SALGANICOFF L. Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem. 1962 Jan-Feb;9:23–35. doi: 10.1111/j.1471-4159.1962.tb07489.x. [DOI] [PubMed] [Google Scholar]
- Fonnum F. A radiochemical method for the estimation of choline acetyltransferase. Biochem J. 1966 Aug;100(2):479–484. doi: 10.1042/bj1000479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fonnum F. Is choline acetyltransferase present in synaptic vesicles? Biochem Pharmacol. 1966 Oct;15(10):1641–1643. doi: 10.1016/0006-2952(66)90216-4. [DOI] [PubMed] [Google Scholar]
- Germain M., Proulx P. Adenosinetriphosphatase activity in synaptic vesicles of rat brain. Biochem Pharmacol. 1965 Dec;14(12):1815–1819. doi: 10.1016/0006-2952(65)90271-6. [DOI] [PubMed] [Google Scholar]
- HEBB C. O., SMALLMAN B. N. Intracellular distribution of choline acetylase. J Physiol. 1956 Nov 28;134(2):385–392. doi: 10.1113/jphysiol.1956.sp005650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HEBB C. O., WHITTAKER V. P. Intracellular distributions of acetylcholine and choline acetylase. J Physiol. 1958 Jun 18;142(1):187–196. doi: 10.1113/jphysiol.1958.sp006008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hosie R. J. The localization of adenosine triphosphatases in morphologically characterized subcellular fractions of guinea-pig brain. Biochem J. 1965 Aug;96(2):404–412. doi: 10.1042/bj0960404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JARNEFELT J. Sodium-stimulated adenosinetriphosphatase in microsomes from rat brain. Biochim Biophys Acta. 1961 Mar 18;48:104–110. doi: 10.1016/0006-3002(61)90520-0. [DOI] [PubMed] [Google Scholar]
- JOHNSON M. K. The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem J. 1960 Dec;77:610–618. doi: 10.1042/bj0770610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON M. K., WHITTAKER V. P. LACTATE DEHYDROGENASE AS A CYTOPLASMIC MARKER IN BRAIN. Biochem J. 1963 Sep;88:404–409. doi: 10.1042/bj0880404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KECK K., CHOULES E. A. The differential binding of lactate dehydrogenase (LDH) isozymes to ribonucleoprotein particles. Arch Biochem Biophys. 1962 Nov;99:205–209. doi: 10.1016/0003-9861(62)90001-2. [DOI] [PubMed] [Google Scholar]
- LEBARON F. N., FOLCH J. The effect of pH and salt concentration on aqueous extraction of brain proteins and lipoproteins. J Neurochem. 1959 Apr;4(1):1–8. doi: 10.1111/j.1471-4159.1959.tb13168.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McCaman R. E., Rodríguez de Lores G., De Robertis E. Species differences in subcellular distribution of choline acetylase in the CNS. A study of choline acetylase, acetylcholinesterase, 5-hydroxytryptophan decarboxylase, and monoamine oxidase in four species. J Neurochem. 1965 Nov;12(11):927–935. doi: 10.1111/j.1471-4159.1965.tb11936.x. [DOI] [PubMed] [Google Scholar]
- Morris D., Hebb C., Bull G. Inhibition of choline acetyltransferase by excess cysteine. Nature. 1966 Feb 26;209(5026):914–915. doi: 10.1038/209914a0. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER W. C. INTRACELLULAR DISTRIBUTION OF ENZYMES. XIII. ENZYMATIC SYNTHESIS OF DEOXYCYTIDINE DIPHOSPHATE CHOLINE AND LECITHIN IN RAT LIVER. J Biol Chem. 1963 Nov;238:3572–3578. [PubMed] [Google Scholar]
- TOSCHI G. A biochemical study of brain microsomes. Exp Cell Res. 1959 Feb;16(2):232–255. doi: 10.1016/0014-4827(59)90252-6. [DOI] [PubMed] [Google Scholar]
- WHITTAKER V. P., MICHAELSON I. A., KIRKLAND R. J. The separation of synaptic vesicles from disrupted nervending particles. Biochem Pharmacol. 1963 Mar;12:300–302. doi: 10.1016/0006-2952(63)90156-4. [DOI] [PubMed] [Google Scholar]
- WHITTAKER V. P., SHERIDAN M. N. THE MORPHOLOGY AND ACETYLCHOLINE CONTENT OF ISOLATED CEREBRAL CORTICAL SYNAPTIC VESICLES. J Neurochem. 1965 May;12:363–372. doi: 10.1111/j.1471-4159.1965.tb04237.x. [DOI] [PubMed] [Google Scholar]
- WHITTAKER V. P. The isolation and characterization of acetylcholine-containing particles from brain. Biochem J. 1959 Aug;72:694–706. doi: 10.1042/bj0720694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]