Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Apr;103(1):280–288. doi: 10.1042/bj1030280

Protein synthesis by microsomal particles from regenerating rat liver

P N Campbell 1, Elizabeth Lowe 1, Guldborg Serck-Hanssen 1,*
PMCID: PMC1270398  PMID: 6033770

Abstract

1. Washed microsome particles from regenerating liver were shown to incorporate [14C]leucine into protein more actively than similar preparations from normal liver. 2. The total incorporation in the preparations from regenerating liver increased linearly with the amount of protein incubated, whereas this was not so with preparations from normal liver. 3. The greater activity of regenerating-liver microsomes appeared to be associated with the bound polysomes. 4. The size distribution of polysomes obtained after removal of membrane with deoxycholate was the same in normal and regenerating liver. 5. In general the activity of polysome preparations from normal and regenerating liver was similar. 6. It is concluded that the greater activity of the particles in the microsome fraction from regenerating liver is to be attributed to the ribosomes bound to membrane and that their activity is controlled by factors present in the membrane.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUCHER N. L. REGENERATION OF MAMMALIAN LIVER. Int Rev Cytol. 1963;15:245–300. doi: 10.1016/s0074-7696(08)61119-5. [DOI] [PubMed] [Google Scholar]
  2. Britten R. J., Roberts R. B. High-Resolution Density Gradient Sedimentation Analysis. Science. 1960 Jan 1;131(3392):32–33. doi: 10.1126/science.131.3392.32. [DOI] [PubMed] [Google Scholar]
  3. CAMMARANO P., GIUDICE G., LUKES B. POLYRIBOSOMES IN REGENERATING LIVER. Biochem Biophys Res Commun. 1965 May 3;19:487–493. doi: 10.1016/0006-291x(65)90151-8. [DOI] [PubMed] [Google Scholar]
  4. CAMPBELL P. N., GREENGARD O. Incorporation of amino acids into some subcellular fractions of hepatic tissues of the rat. Biochem J. 1959 Jan;71(1):148–154. doi: 10.1042/bj0710148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell P. N., Cooper C., Hicks M. Studies on the role of the morphological constituents of the microsome fraction from rat liver in protein synthesis. Biochem J. 1964 Aug;92(2):225–234. doi: 10.1042/bj0920225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell P. N., Serck-Hanssen G., Lowe E. Studies on the protein-synthesizing activity of the ribosomes of rat liver. The activity of free polysomes. Biochem J. 1965 Nov;97(2):422–431. doi: 10.1042/bj0970422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HENSHAW E. C., BOJARSKI T. B., HIATT H. H. PROTEIN SYNTHESIS BY FREE AND BOUND RAT LIVER RIBOSOMES IN VIVO AND IN VITRO. J Mol Biol. 1963 Aug;7:122–129. doi: 10.1016/s0022-2836(63)80041-8. [DOI] [PubMed] [Google Scholar]
  8. HOAGLAND M. B., SCORNIK O. A., PFEFFERKORN L. C. ASPECTS OF CONTROL OF PROTEIN SYNTHESIS IN NORMAL AND REGENERATING RAT LIVER, II. A MICROSOMAL INHIBITOR OF AMINO ACID INCORPORATION WHOSE ACTION IS ANTAGONIZED BY GUANOSINE TRIPHOSPHATE. Proc Natl Acad Sci U S A. 1964 Jun;51:1184–1191. doi: 10.1073/pnas.51.6.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HULTIN T., VON DER DECKEN A. The activity of soluble cytoplasmic constituents from regenerating rat liver in amino acid incorporating systems. Exp Cell Res. 1958 Dec;15(3):581–594. doi: 10.1016/0014-4827(58)90106-x. [DOI] [PubMed] [Google Scholar]
  10. Ibuki F., Gasior E., Moldave K. The interaction of aminoacyl soluble ribonucleic acid and aminoacyl transferase I. J Biol Chem. 1966 May 25;241(10):2188–2193. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lawford G. R., Langford P., Schachter H. The inhibition of rat liver polyribosome breakdown in the presence of liver supernatant. J Biol Chem. 1966 Apr 25;241(8):1835–1839. [PubMed] [Google Scholar]
  13. MCCORQUODALE D. J., VEACH E. G., MUELLER G. C. The incorporation in vitro of labeled amino acids into the proteins of normal and regenerating rat liver. Biochim Biophys Acta. 1961 Jan 15;46:335–343. doi: 10.1016/0006-3002(61)90757-0. [DOI] [PubMed] [Google Scholar]
  14. RENDI R., CAMPBELL P. N. The role of cytoplasmic ribonucleic acid in the incorporation of amino acids into microsomal proteins. Biochem J. 1959 Jul;72:435–441. doi: 10.1042/bj0720435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Staehelin M. Effect of hypophysectomy on rat liver polyribosomes. Biochem Z. 1965 Aug 19;342(4):459–468. [PubMed] [Google Scholar]
  16. Tsukada K., Lieberman I. Protein synthesis by liver polyribosomes after partial hepatectomy. Biochem Biophys Res Commun. 1965 Jun 9;19(6):702–707. doi: 10.1016/0006-291x(65)90314-1. [DOI] [PubMed] [Google Scholar]
  17. VON DER DECKEN A., HULTIN T. The activity of microsomes from regenerating rat liver in amino acid incoporating systems. Exp Cell Res. 1958 Feb;14(1):88–96. doi: 10.1016/0014-4827(58)90216-7. [DOI] [PubMed] [Google Scholar]
  18. WEBB T. E., BLOBEL G., POTTER V. R. POLYRIBOSOMES IN RAT TISSUES. I. A STUDY OF IN VIVO PATTERNS IN LIVER AND HEPATOMAS. Cancer Res. 1964 Aug;24:1229–1237. [PubMed] [Google Scholar]
  19. WETTSTEIN F. O., STAEHELIN T., NOLL H. Ribosomal aggregate engaged in protein synthesis: characterization of the ergosome. Nature. 1963 Feb 2;197:430–435. doi: 10.1038/197430a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES